首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-molecular-mass polysaccharide galactan (M 2000 kDa) was isolated from flax at the stage of cell wall thickening of the bast fiber development. The polymer structure was studied by 1H NMR spectroscopy and MALDI TOF mass spectrometry. It is built up of Gal (59%), Rha (15%), GalA (23%), and Ara (3%) residues. The galactan backbone consists of successively alternating monomer disaccharide units (--> 4GalA1 --> 2Rha1 -->)n and is similar in its structure to the backbone of rhamnogalacturonan-1 (RG-I). Rhamnose residues bear in position 4 beta-(1 --> 4)-galactose side chains of various lengths with a polymerization degree of up to 28 or higher. A part of the side chains have branchings.  相似文献   

2.
Two galacturonic-acid-containing polysaccharide fractions (ChSS and P) were isolated from soybean meal and subjected to lithium treatment. The fragments obtained were analyzed by using monosaccharide and methylation analyses, and NMR spectroscopy. Lithium degradation of ChSS, followed by sodium borodeuteride reduction, hydrolysis, sodium borohydride reduction, and acetylation afforded alditol acetates, of which the labeled ones reflected residues linked to GalA. As followed from quantifications of the labeled and non-labeled alditols from each constituent monosaccharide by GLC-EIMS, 6 mol% of Ara, 22 mol% of Fuc, 13 mol% of Gal, 53 mol% of Rha, and 57 mol% of Xyl are glycosidically linked to GalA. Analysis of the lithium-treated polymer revealed that it contains arabinogalactan side chains linked to Rha O-4, which consist of a beta-(1 --> 4)-linked galactan substituted with highly branched arabinan chains. On average, an arabinogalactan chain contains up to 29 Gal and 25 Ara residues. Surface plasmon resonance was used to determine conditions for affinity chromatography. Furthermore, this technique confirmed the presence of terminal alpha-Fuc residues in ChSS. Polysaccharide P turned out to be relatively resistant to lithium degradation.  相似文献   

3.
When the unicellular organism Prototheca zopfii was grown on a malt-agar medium, a mixture of polysaccharides was synthesised which could be subsequently extracted from the dried cells with hot water and hot alkali. The major polysaccharide was a galactan which had a branched structure with main chains of (1→6)-linked D-galactopyranose residues, and ≈ 10% of side chains containing terminal D-galacto-furanose residues. A glycogen-type polysaccharide and a (1→4)-linked mannan were also produced.  相似文献   

4.
《Carbohydrate research》1987,168(2):245-274
Rhamnogalacturonan I is a pectic polysaccharide that is solubilized from the walls of suspension-cultured sycamore cells (Acer pseudoplatanus) by the action of a highly purified endo-1,4-α-polygalacturonanase. Rhamnogalacturonan I has a linear backbone consisting of the diglycosyl repeating unit, →4)-α-d-GalpA-(1→2)-α-l-Rhap-(1→. Approximately half of the α-l-rhamnosyl residues of the backbone are branched at O-4. Selective cleavage at the galactosyluronic acid residues of the backbone by treatment of rhamnogalacturonan I wit lithium in ethylenediamine resulted in the release of the neutral glycosyl-residue sidechains that had been attached to the backbone. Various analytical techniques, including combined liquid chromatography-mass spectrometry, combined gas-liquid chromatography-mass spectrometry, and 1H-nuclear magnetic resonance spectroscopy, were used to determine the structure of the side chains. The majority of the sidechains were isolated as oligoglycosylalditols, with rhamnitol at the “reducing” end. Terminal 2-, 4-, or 6-linked galactosyl residues were found attached to O-4 of the rhamnitol residues The 2-, 4-, and 6-linked galactosyl residues had terminal or 2-linked arabinosyl, or additional galactosyl, residues attached to them. Based on the results of fast-atom-bombardment mass spectrometry, the side chains were found to range in size from one to fourteen glycosyl residues. The side-chain structures suggest that there are four or more distinct families of side chains attached to the backbone of rhamnogalacturonan I.  相似文献   

5.
Pectin has been shown to inhibit the actions of galectin-3, a β-galactoside-binding protein associated with cancer progression. The structural features of pectin involved in this activity remain unclear. We investigated the effects of different ginseng pectins on galectin-3 action. The rhamnogalacturonan I-rich pectin fragment, RG-I-4, potently inhibited galectin-3-mediated hemagglutination, cancer cell adhesion and homotypic aggregation, and binding of galectin-3 to T-cells. RG-I-4 specifically bound to the carbohydrate recognition domain of galectin-3 with a dissociation constant of 22.2 nm, which was determined by surface plasmon resonance analysis. The structure-activity relationship of RG-I-4 was investigated by modifying the structure through various enzymatic and chemical methods followed by activity tests. The results showed that (a) galactan side chains were essential to the activity of RG-I-4, whereas arabinan side chains positively or negatively regulated the activity depending on their location within the RG-I-4 molecule. (b) The activity of galactan chain was proportional to its length up to 4 Gal residues and largely unchanged thereafter. (c) The majority of galactan side chains in RG-I-4 were short with low activities. (d) The high activity of RG-I-4 resulted from the cooperative action of these side chains. (e) The backbone of the molecule was very important to RG-I-4 activity, possibly by maintaining a structural conformation of the whole molecule. (f) The isolated backbone could bind galectin-3, which was insensitive to lactose treatment. The novel discovery that the side chains and backbone play distinct roles in regulating RG-I-4 activity is valuable for producing highly active pectin-based galectin-3 inhibitors.  相似文献   

6.
Wang XS  Dong Q  Zuo JP  Fang JN 《Carbohydrate research》2003,338(22):2393-2402
S3A was a RG-I pectin isolated from Centella asiatica that contained Rha, Ara, Gal, Glc and GalA in molar ratio of 1.0:0.6:1.5:0.2:1.1 and had been found to have a backbone composed mainly of the disaccharide repeat unit, -->4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-->. Based on methylation analysis, NaIO4 oxidation, partial acid hydrolysis and lithium-treatment, the structural features were elucidated. Side chains of S3A were predominantly linked to O-4 of 1,2,4-linked alpha-L-Rhap. The side chains are comprised of arabinosyl chains, galactosyl chains, arabinogalactosyl chains and short glucosyl chains. A total of 45% Rhap in the backbone was substituted by side chains. The arabinosyl residues were mostly distributed in the arabinosyl side chains. According to the immunological results of S3A and its degraded derivatives, S3A had no immunological activity, but its derivatives had immuno-stimulating activities to some extent.  相似文献   

7.
《Carbohydrate research》1988,172(2):217-227
Cell-wall fractions have been prepared from an alcohol-insoluble-residue of carrot root by treatment with (a) Pronase to remove the cytoplasmic proteins, (b) hot dilute acid and cold dilute alkali to give pectin-free residues, and (c) concentrated alkali to leave the α-cellulose and lignin. The purified cell-wall material still contained ∼ 1% protein and was composed mainly of cellulose, lignin, methyl-esterified galacturonic acid, and smaller amounts of galactose and arabinose. Methylation analysis of the insoluble residues indicated the presence, in order of decreasing concentration, of rhamnogalacturonan with the rhamnosyl residues carrying side chains at position 4, cellulose, (1→4)-linked galactan, (1→5)-linked arabinan, (1→4)-linked xylan, (1→4)-linked mannan, and xyloglucan.  相似文献   

8.
The polysaccharide component of the stigmatic exudate from Lilium longiflorum has the composition, arabinose (26%), rhamnose (6%), galactose (57%) and glucuronic acid (11%). The highly branched polysaccharide bears a striking resemblance to the acidic polysaccharide exudate from Araucaria bidwillii in belonging to the galactan group and in carrying outer chains terminated by arabinofuranose, rhamnopyranose, galactopyranose and glucuronic acid residues. Both polysaccharides contain the sequence O-rhamnopyranosyl-(1→4)-glucopyranosyluronic acid-(1→6)-galactopyranose in some of the outer chains.  相似文献   

9.
Structure and immunological characteristics of the pectic arabinogalactan Vk2a (previously reported as Vk100A2a) from the roots of Vernonia kotschyana Sch. Bip. ex Walp. were investigated after enzymatic digestion of the galacturonan moiety and the side chains of the rhamnogalacturonan structure of Vk2a. endo-alpha-D-(1-->4)-Polygalacturonase digestion released the high molecular weight 'hairy region' (Vk2a-HR) and oligogalacturonides. Vk2a-HR consisted of GalA (4-linked) and Rha (2- or 2,4-linked) in a 1:1 ratio, with 60% of Rha branched at C-4. The Rha located in the rhamnogalacturonan core was branched randomly by Gal units. Vk2a-HR was rich in neutral sugars such as Araf 5- (12.2%) and 3,5-substituted (12.8%) and terminally- (14.1%) linked and Gal 4- (13.0%), 3- (0.9%), 6- (2.2%) and 3,6- (1.1%) substituted. Arabinans with chain lengths up to 11 units were identified. Araf residues were attached to C-3 of alpha-L-(1-->5)-Araf chains and to C-4 of Gal residues. Single Gal units and chains of beta-D-(1-->6)-linked galacto di- to penta-saccharides were attached to a beta-D-(1-->3)-galactan core. All the enzyme resistant fractions expressed potent complement fixation and induction of B-cell mitogenic activity, and the present study indicates that there may be several and possibly structurally different active sites involved in the bioactivity of Vk2a. The bioactive sites may be located both in the more peripheral parts of the molecule but also in the inner core of the 'hairy region' or in larger enzyme-resistant chains.  相似文献   

10.
A water soluble polysaccharide (RAP) was isolated and purified from Radix Astragali and its structure was elucidated by monosaccharide composition, partial acid hydrolysis and methylation analysis, and further supported by FT-IR, GC-MS and 1H and 13C NMR spectra, SEM and AFM microscopy. Its average molecular weight was 1334 kDa. It was composed of Rha, Ara, Glc, Gal and GalA in a molar ratio of 0.03:1.00:0.27:0.36:0.30. The backbone consisted of 1,2,4-linked Rhap, α-1,4-linked Glcp, α-1,4-linked GalAp6Me, β-1,3,6-linked Galp, with branched at O-4 of the 1,2,4-linked Rhap and O-3 or O-4 of β-1,3,6-linked Galp. The side chains mainly consisted of α-T-Araf and α-1,5-linked Araf with O-3 as branching points, having trace Glc and Gal. The terminal residues were T-linked Araf, T-linked Glcp and T-linked Galp. Morphology analysis showed that RAP took random coil feature. RAP exhibited significant immunomodulating effects by stimulating the proliferation of human peripheral blood mononuclear cells and enhancing its interleukin production.  相似文献   

11.
Partial acid hydrolysis of the anti-complementary acidic heteroglycan, AAFIIb-3, isolated from the leaves of Artemisia princeps PAMP gave the oligosaccharides Gal-(1→6)-Gal, Gal-(1→6)-Gal-(1→6)-Gal, GalA-(1→4)-Rha, GalA-(1→2)-Rha, GlcA-(1→4)-Gal, GlcA-(1→4)-Rha, GlcA-(1→6)-Gal, and GlcA-(1→4)-Xyl. On methylation of AAFIIb-3 without de-esterification, 4-linked and 3,6-disubstituted galactan, 3-linked galactan, 4-linked galactan, and branched arabinan-rich fragments were obtained. The results of base-catalysed β-elimination indicated that AAFIIb-3 has a backbone consisting of 4-linked GalA and 2-linked Rha to which a highly branched arabino-3,6-galactan and arabino-4-galactan are linked at positions 4 of some 2-linked Rha units. Xyl-(1→4)-GalA, GlcA-(1→4)-Xyl-GalA, and →3)-Gal-(1→4)-GalA might also be joined to other 2-linked Rha at the same position. Some 6-linked and 4-linked Gal were terminated by GlcA.  相似文献   

12.
Two l-arabino-d-galactan-containing glycoproteins having a potent inhibitory activity against eel anti-H agglutinin were isolated from the hot saline extracts of mature radish leaves and characterized to have a similar monosaccharide composition that consists of l-arabinose, d-galactose, l-fucose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid residues. The chemical structure features of the carbohydrate components were investigated by carboxyl group reduction, methylation, periodate oxidation, partial acid hydrolysis, and digestion with exo- and endo-glycosidases, which indicated a backbone chain of (1→3)-linked β-d-galactosyl residues, to which side chains consisting of α-(1→6)-linked d-galactosyl residues were attached. The α-l-arabinofuranosyl residues were attached as single nonreducing groups and as O-2- or O-3-linked residues to O-3 of the β-d-galactosyl residues of the side chains. Single α-l-fucopyranosyl end groups were linked to O-2 of the l-arabinofuranosyl residues, and the 4-O-methyl-β-d-glucopyranosyluronic acid end groups were linked to d-galactosyl residues. The O-α-l-fucopyranosyl-(1→2)-α-l-arabinofuranosyl end-groups were shown to be responsible for the serological, H-like activity of the l-arabino-d-galactan glycoproteins. Reductive alkaline degradation of the glycoconjugates showed that a large proportion of the polysaccharide chains is conjugated with the polypeptide backbone through a 3-O-d-galactosylserine linkage.  相似文献   

13.
Pectin is a group of carbohydrate polymers constructing the primary cell walls and the middle lamella of terrestrial plants. Herein, we demonstrated the structure and immunomodulatory activity of the major pectic polysaccharide DL‐3B2 isolated from the leaves of Diospyros kaki. Based on composition analysis, methylation analysis, two‐step acid hydrolysis, lithium‐mediated selective degradation, 13C NMR spectroscopy, and electrospray ionization mass spectrometry, DL‐3B2 was found to contain an α‐1, 4‐linked galacturonic acid (GalA) backbone with some insertions of α‐1, 2‐linked rhamnose residues. The arabinan‐ and arabinogalactan‐side chains were attached to O‐4 of the rhamnose residues, whereas the linear arabinoxylan was probably linked to O‐3 of the GalA residues. Immunological tests in vitro showed that DL‐3B2 could help stimulate lipopolysaccharide‐induced B lymphocyte proliferation, but not ConA‐induced T lymphocyte proliferation, and that the arabinose residues play a role in maintaining this immunological activity. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 649–656, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
Two classes of neutral polysaccharide which could not be separated from each other by conventional methods were isolated from the fungus, Lampteromyces japonicus, by affinity chromatography using concanavalin A-Sepharose. The polysaccharide retained on the concanavalin A-Sepharose column was eluted with 0.05 M methyl α-d-mannopyranoside and appeared to be α-mannan, while that which passed through the column was virtually all β-glucan.Both polysaccharides were subjected to Smith-type degradation, methylation, acetolysis and glucosidase treatment. The results indicated that the α-mannan contained predominantly α-(1 → 2)-linked side chains branching from an α-(1 → 6)-linked backbone at the (1 → 2,6)-linked mannopyranosyl residues. Galactose was attached to approximately one-quarter of the non-reducing mannose terminals. The β-glucan seemed to contain mainly (1 → 6)-linked side chains branching from a (1 → 3)-linked backbone at the (1 → 3,6)-linked glucopyranosyl residues.  相似文献   

15.
Two polysaccharides were isolated from submergedly cultured mycelium of the basidiomycete Ganoderma lucidum by extraction with alkali followed by fractionation with Fehling reagent. The polysaccharides were shown to be a linear (1→3)-α-D-glucan and a highly branched xylomannan containing a backbone built up of (1→3)-linked α-D-mannopyranose residues, the majority of which are substituted at O-4 by single β-D-xylopyranose residues or by disaccharide fragments β-D-Manp-(1→3)-β-D-Xylp-(1→. Polysaccharide structures were elucidated by NMR spectroscopy in combination with methylation analysis and periodate oxidation. An interesting feature of the xylomannan is the simultaneous presence of α-D-mannopyranose and β-D-mannopyranose residues, the first forming the backbone, and the second being the non-reducing terminal units of disaccharide side chains.  相似文献   

16.
从刺五加果中抽提出水溶性粗多糖。经酸性乙醇分级及反复冻融得到多糖AS-2。AS-2经Sepharose CL-4B柱层析为单一对称峰,经醋酸纤维素膜电泳为一条带,冻融后高速离心无沉淀可证明其为均一级分。G.C分析表明,AS-2由Ara、Xyl、Rha、Gal、Glc组成,其单糖摩尔比为1.6:1.2:1.8:1.0:3.6。AS-2的分子量约为78kD,比旋光度[α]_D~(25)=+17°,特性粘度[η]=0.068。红外光谱分析含β型糖苷键。部分酸水解、酶解、高碘酸酸化、Smith降解、完全甲基化、G.C,G.C-M.S的分析结果表明,以β(1→3)Glc及β(1→4)Glc构成分子的主链。Glc的C_3上带有分支,约每4个己糖残基带有1个侧链。侧链上,Rha多以1→4苷键相连,部分残基C_2上有分支。Gal存在(1→6)及(1→3)连接方式,多数Glc以(1→6)苷键连结,少数Glc出现在分子非还原末端。位于分子末端的还有Ara与Xyl。  相似文献   

17.
Carbohydrate structures in the interior of a blood group A active substance (MSS) were exposed by one and by two Smith degradations. Reactivities of the original glycoprotein and its Smith degraded products with 13 different lectins and with anti-I Ma were studied by quantitative precipitin assay. MSS and its first Smith degraded product completely precipitated Ricinus communis hemagglutinin with five times less of the first Smith degraded glycoprotein being required for 50% precipitation. The second Smith degraded material precipitated only 90% of the lectin. MSS did not precipitate peanut lectin, whereas its first and second Smith degraded products completely precipitated the lectin. The first Smith degraded glycoprotein also reacted well with Wistaria floribunda, Maclura pomifera, Bauhinia purpurea alba, and Geodia lectins indicating that its carbohydrate moiety could contain dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 4dGlcNAc, dGalβ1 → 3dGlcNAcβ1 → 3dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGalNAc determinants at nonreducing ends. The second Smith degraded material precipitated well with Ricinus communis hemagglutinin, Arachis hypogaea, Geodia cydonium, Maclura pomifera, and Helix pomatia lectins showing that dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 4dGlcNAc residues at terminal nonreducing ends could be involved. Monoclonal anti-I Ma (group 1) serum reacted strongly with the first Smith degraded product indicating large numbers of anti-I Ma determinants, dGalβ1 → 4dGlcNAcβ1 → d 6dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGalNAc at nonreducing ends. The comparable activities of the native and Smith degraded products with wheat germ lectin indicate capacity to react with DGlcNAc residues at nonreducing ends and/or at positions in the interior of the chain. The totality of lectin reactivities indicates heterogeneity of the carbohydrate side chains. Oligosaccharides with 3H at their reducing ends released from the protein core of the first and second Smith degraded products were obtained by treatment with 0.05 m NaOH and 1 M NaB3H4 at 50 °C for 16 h (Carlson degradation). The liberated reduced oligosaccharides were fractionated by dialysis, followed by retardion, Bio-Gel P-2, P-4, and P-6 columns. They were further purified on charcoal-celite columns, and by preparative paper chromatography and high-pressure liquid chromatography. Their distribution by size was estimated by the yields on dialysis, Bio-Gel P-2, and Bio-Gel P-6 chromatography, and from the radioactivity of the reduced sugars. Of the oligosaccharide fractions from the first Smith degraded product, about 77% of the carbohydrate side chain residues contained from 1 to 6 sugars, 13% from 7 to perhaps 12 sugars, and 10% was nondialyzable (polysaccharides and glycopeptide fragments). Of the second Smith degraded product, approximately 82% of carbohydrate residues had from 1 to 6 sugars, 14% from 7 to perhaps 20 sugars and 4% was nondialyzable. The biological activity profile of the two Smith degraded products together with the size distributions of the oligosaccharides indicated that their carbohydrate side chains, comprised a heterogeneous population ranging in size from 1 to about 12 sugars. When most of these chains that are shorter than hexasaccharides are fully characterized it may be possible to reconstruct the overall structure of the carbohydrate moiety of the blood group substances and account for their biological activities.  相似文献   

18.
In this study, an efficient polysaccharide, named CAL-n (Crinum asiaticum L.-n) was isolated and purified from Crinum asiaticum L for the first time, Mw(molecular weight) of 730,000 Da. CAL-n comprised Rha(rhamnose), Sor(sorbose), Gal(galactose) and Glu(glucosein) the molar ratio of 1:61.6:1.66:4.74. The chemical structure of CAL-n was studied by Infrared spectrum and GC–MS(Gas Chromatography–Mass Spectrometer) analysis. Experimental results reflected, that the backbone of CAL-n comprised (1 → 2), (1 → 6), (1 → 3) beta-pyran glycoside bond, without (1 → 4) beta-pyran glycoside bond. In addition, an MTT assay indicated that the growth of HepG2 cells was affected by CAL-n, with a concentration dependant ration. The results indicated that CAL-n should by exploration as anti-tumor activities in vivo.  相似文献   

19.
The structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, has been further investigated. Periodate oxidation, Smith degradation, methylation analysis, and bioassay were the principal methods used. These studies showed that a branched molecule having a backbone of (1→3)-β-d-glucan and side chains of both β-d-(1→3)- and β-d-(1→6)-linked d-glucose residues, together with a few internal β-d-(1→6)-linkages, is present.  相似文献   

20.
《Phytochemistry》1987,26(4):1197-1198
The Cetavlon non-precipitable fraction of Becium filamentosum seed mucilage on DEAE-cellulose column chromatography yielded three fractions. The major polysaccharide was composed of L-rhamnose, D-galactose and L-arabinose (1:2:2). Structural analysis revealed a (1 → 4)-linked D-galactopyranose backbone with occasional side chains at O-6 of (1 → 5)-linked L-arabinofuranose terminating in rhamnopyranosyl residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号