首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. We report results of a three year comparative laboratorystudy of kin recognition abilities in Arctic ground squirrels(Spermophilus parryii) and Belding's ground squirrels (S. beldingi),and a field investigation of kin recognition in S. beldingi.Our laboratory work shows that in both species, preweaned pupsreared together, whether they are biological siblings or cross-fostered(unrelated) nestmates, are equally aggressive in subsequentpaired arena tests. Thus, pups that share a natal nest are treatedlike siblings. Among pups reared apart, sister-sister pairsare less aggressive in arena tests than are pairs of nonkinfemales, whereas relatedness does not affect male-male or male-femaleaggression. Thus both relatedness and rearing environment mediaterecognition among female S. parryii and S. beldingi. In free-livingBelding's ground squirrels at Tioga Pass, California, dam-offspringand sister-sister recognition apparently first occur at weaning,coincident with aboveground emergence of juveniles. Most intriguing(electrophoretically identified) littermate full-sisters andmaternal half-sisters, which result from multiple mating byfemales, seem to treat each other differently despite havingshared a natal nest. The full-sisters are less agonistic andmore cooperative than the half-sisters. In interpreting theselaboratory and field results, we explore four proximal mechanismsby which kin might be identified, including one in which recognitionis based on (learned) phenotypic similarity to an individual'snestmates or itself (phenotype matching). Our data and thoseof several recent investigators of recognition in other taxaimplicate both association with relatives and phenotype matchingin the ontogeny of kin recognition.  相似文献   

2.
Kin recognition and incest avoidance in a group-living insect   总被引:2,自引:0,他引:2  
Mate choice theories predict that animals evolved strategiesto mate with optimally genetically dissimilar partners, providingfitness benefits. In group-living species, when adults do notdisperse, assessment of relatedness between conspecifics canbe a key factor for choosing mates. Here, we report for thefirst time, kin recognition abilities and their implicationin mate choice in the gregarious cockroach, Blattella germanica(L.). Binary choice tests showed that females mated preferentiallywith nonsibling rather than with sibling males, thus avoidingincest. In addition, inbreeding induced an important decreaseof their reproductive success. Contrary to what could be expectedwhen females had the choice between a nonsibling strain memberand a nonstrain member, they did not avoid mating with distantlyrelated nonstrain members, and extreme outbreeding induced anincrease of their reproductive success. Furthermore, our matechoice experiments disentangled the influences of familiarityfrom those of relatedness and evidenced that kin discriminationwas based on genetic cues independently of familiarity. Phenotypematching was a plausible mechanism for kin recognition. Contraryto many insect species, body size was not a salient criterionfor mate choice and had no consequences on reproductive success.  相似文献   

3.
Kin recognition and cannibalism in polyphenic salamanders   总被引:3,自引:1,他引:2  
We investigated kin discrimination among larvae of Arizona tigersalamanders (Ambystoma tigrinum nebulosum) which occur as "typical"morphs that feed mostly on invertebrate prey and occasionallyon conspecifics, and as "cannibal" morphs that feed primarilyon conspecifics. When housed with smaller larvae that differedin relatedness, both cannibals and typicals preferentially consumedless-related individuals. Cannibals ate typicals much quickerwhen the choice was between nonkin and siblings than when thechoice was between nonkin and cousins, indicating that cannibalscould distinguish different categories of relatives. Cannibalswere less likely to eat a larval sibling that was a cannibalmorph than a sibling that was a typical morph. Occluding animals'nares temporarily eliminated kin discrimination, implying thatolfaction is important in recognition. Larvae from differentsibships varied considerably in their ability to discriminatekin, and the greater the probability that a larva from a givensibship would develop into a cannibal morph, the more likelythe members of that sibship were to discriminate kin. Our resultsenable us to infer the functional significance of kin recognitionin this species and to develop an evolutionary model of themechanisms underlying the joint control of kin recognition andcannibalistic polyphenism.  相似文献   

4.
Cascades frog (Rana cascadae) tadpoles preferentially associate with full siblings over half sibling and half siblings over non-siblings when reared with siblings or as isolates. These tadpoles can use cues of maternal or paternal origin in distinguishing siblings from non-siblings, but maternal cues are preferred over paternal cues. This suggests that a hierarchy of cue importance may exist. Our results are consistent with both a phenotypic matching and a genetic recognition system of kin recognition. Thus, both learned and innate components may play a role in R. cascadae sibling recognition. Kin recognition may facilitate preferential treatment of kin, such as cooperation in food finding or in warning against predators, and therefore those individuals behaving altruistically in kin groups can increase their inclusive fitness.  相似文献   

5.
The ability to recognise kin requires the individual to possess a variety of abilities. Individuals must produce a cue which indicates relatedness, they must process this cue to determine relatedness and then must act on this cue. Research has concentrated on the first and final stage of this process, i.e., the cues of kinship and kin correlated behaviour. Little attention has been paid to how individuals process cues to determine relatedness. This paper discusses how individuals ‘recognise’ kin, the exhibition of kin correlated behaviour and considers the role of the MHC in these processes. Two broad theories have emerged to explain how individuals recognise their kin: either a recognition gene(s) or some experiential mechanism. In mammals there is no evidence to suggest that recognition (the processing of the cue) is under genetic control but rather is the result of experience, learning about related individuals during development. Moreover studies on kin recognition in the domestic dog suggest that all kin are not recognised by the same process but different classes of kin, parents, siblings may well be recognised using different means. Studies of kin correlated behaviour suggest that the behaviour exhibited towards kin by Mongolian gerbils is mediated by the environment. Factors of environmental familiarity, sex and developmental age all affect the response of individuals to kin and non‐kin. In these situations the ability to recognise kin does not change but the exhibition of kin correlated behaviour changes according to environmental conditions. These studies indicate that kin recognition may not be the ‘unified’ process previously thought and thus any explanations of the proximate and ultimate causation of kin recognition need to encompass this complexity. The question remains of whether the MHC is complex enough to do so. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Evidence from studies with adult rodents indicates that individual recognition enables distinctions between familiar individuals irrespective of relatedness (but including close kin) and a separate mechanism enables discriminations based on genetic relatedness without prior familiarity. For example, adult mice could assess the extent of their genetic relatedness to unfamiliar individuals using perceptual similarities between their individual odours. The ontogeny of this genetic relatedness assessment mechanism, however, had not been investigated. Here, in two-choice tests, newborn mice differentially preferred odours of more genetically similar lactating females (paternal aunts to unrelated conspecific and conspecific to heterospecific) even without prior direct exposure to adults with the tested genotypes. The results provide a direct demonstration of genetic relatedness assessment abilities in newborns and show that experience with parental odours is not necessary for genetic relatedness distinctions. Future studies will be necessary to determine whether exposure to odours of other foetuses in the womb or littermates shortly after birth affects this genetic relatedness assessment process.  相似文献   

7.
Salmonids are characterized by alternative reproductive tactics, which can lead to an asymmetry in relatedness among offspring within nests and consequently the benefit of discriminating among nestmates. In this study, we examined the effect of paternal reproductive tactic on juvenile behaviour and kin discrimination in Chinook salmon. We created maternal half‐sibling families by collecting eggs from mature females and fertilizing one‐half with the milt of a precocious 2‐yr‐old male and the other half with the milt of a non‐precocious 4‐yr‐old male. These families were reared in full‐sibling groups for approximately 9 mo, and social interactions were then observed in groups of six fish of mixed relatedness. We found evidence for kin discrimination, as significantly less aggression was directed towards related fish than unrelated fish, and the same trends were observed regardless of whether social interactions included full‐siblings or half‐siblings. These results show that familiarity is not required to recognize kin and thereby implicate phenotype matching as the mechanism of kin recognition. We also found that the offspring of 2‐yr‐old males were larger and more aggressive than the offspring of 4‐yr‐old males, which is consistent with other studies showing that precocious males are the fastest‐growing members of their cohort. However, kin‐directed behaviours did not differ between the offspring of 2‐ and 4‐yr‐old males.  相似文献   

8.
Many animals modify their behavior toward unfamiliar conspecifics as a function of their genetic relatedness. A fundamental problem of any kin recognition study is determining what is being recognized and why. For anuran tadpoles, the predominant view is that associating with relatives is kin-selected because these relatives may thereby accrue benefits through increased growth or predation avoidance. An alternative view is that kin associations are simply a side-effect of habitat selection and thus do not represent attempts to identify kin per se. In the laboratory, spadefoot toad tadpoles (Scaphiopus multiplicatus) preferentially associated with unfamiliar siblings over unfamiliar nonsiblings, as do other anurans. However, same age tadpoles also were more likely to orient toward unfamiliar nonsiblings reared on the same food (familiar food) than toward unfamiliar siblings that were reared on unfamiliar food. These results, together with the results of previous tadpole kin recognition studies, suggest that tadpoles orient toward cues learned early in ontogeny, regardless of the cues' source. Tadpoles that preferentially associated with cues learned from their environment at birth would tend to be philopatric. Censuses of 14 natural ponds revealed that tadpole density remained greatest near oviposition sites until four days before metamorphosis. Tadpole philopatry may be advantageous: tadpoles restricted to their natal site had greater growth and survivorship than did their siblings restricted to randomly selected sites elsewhere within the same pond. Thus kin affiliative tendency observed in the laboratory in this and perhaps other species of anurans may be a byproduct of habitat selection. Since kin discrimination in animals is most commonly assayed as orientation toward kin, it follows that many examples of “kin recognition” may not represent true attempts to identify kin as such, but rather may reflect some other recognition system that is under entirely different selective pressures.  相似文献   

9.
Paternal kin discrimination in wild baboons.   总被引:10,自引:0,他引:10  
Mammals commonly avoid mating with maternal kin, probably as a result of selection for inbreeding avoidance. Mating with paternal kin should be selected against for the same reason. However, identifying paternal kin may be more difficult than identifying maternal kin in species where the mother mates with more than one male. Selection should nonetheless favour a mechanism of paternal kin recognition that allows the same level of discrimination among paternal as among maternal kin, but the hypothesis that paternal kin avoid each other as mates is largely untested in large mammals such as primates. Here I report that among wild baboons, Papio cynocephalus, paternal siblings exhibited lower levels of affiliative and sexual behaviour during sexual consortships than non-kin, although paternal siblings were not significantly less likely to consort than non-kin. I also examined age proximity as a possible social cue of paternal relatedness, because age cohorts are likely to be paternal sibships. Pairs born within two years of each other were less likely to engage in sexual consortships than pairs born at greater intervals, and were less affiliative and sexual when they did consort. Age proximity may thus be an important social cue for paternal relatedness, and phenotype matching based on shared paternal traits may play a role as well.  相似文献   

10.
《Animal behaviour》1998,55(2):377-386
Differential treatment of kin and non-kin has been well documented, but much remains unclear about how kin are recognized. If kin are recognized by a phenotype-matching mechanism, there must be a correlation between genetic relatedness and the similarity of cues used for recognition. A habituation technique was used with golden hamsters,Mesocricetus auratus, to investigate the relative similarity of the odour quality of flank gland secretions from siblings and unrelated individuals. Hamsters discriminated between the odours of their own, same-sex siblings but also treated these odours as similar compared to odours of non-siblings (experiment 1). They did not discriminate between the flank gland odours of unfamiliar siblings from another family (experiment 2). They also did not discriminate between the flank gland odours of unfamiliar, paternal half-siblings from another family (experiment 3). These results indicate that subjects perceived odours from genetically similar individuals as similar and provide evidence for kinship odour cues. The discrimination between the flank gland odours of subjects’ own siblings, however, indicates that hamsters learn the subtle differences between the odours of their close kin, probably through experience with siblings in the nest. When only volatile components from flank gland secretions were available to subjects (experiment 4), they again discriminated between the odours of their own siblings, suggesting that the volatile components from the flank gland secretion were sufficient for recognition of individual litter-mates.  相似文献   

11.
Cooperation plays a key role in the development of advanced societies and can be stabilized through shared genes (kinship) or reciprocation. In humans, cooperation among kin occurs more readily than cooperation among non-kin. In many organisms, cooperation can shift with age (e.g. helpers at the nest); however, little is known about developmental shifts between kin and non-kin cooperation in humans. Using a cooperative game, we show that 3- to 10-year-old French schoolchildren cooperated less successfully with siblings than with non-kin children, whether or not non-kin partners were friends. Furthermore, children with larger social networks cooperated better and the perception of friendship among non-friends improved after cooperating. These results contrast with the well-established preference for kin cooperation among adults and indicate that non-kin cooperation in humans might serve to forge and extend non-kin social relationships during middle childhood and create opportunities for future collaboration beyond kin. Our results suggest that the current view of cooperation in humans may only apply to adults and that future studies should focus on how and why cooperation with different classes of partners might change during development in humans across cultures as well as other long-lived organisms.  相似文献   

12.
Recent work has shown that certain plants can identify their kin in competitive settings through root recognition, and react by decreasing root growth when competing with relatives. Although this may be a necessary step in kin selection, no clear associated improvement in individual or group fitness has been reported to qualify as such. We designed an experiment to address whether genetic relatedness between neighbouring plants affects individual or group fitness in artificial populations. Seeds of Lupinus angustifolius were sown in groups of siblings, groups of different genotypes from the same population and groups of genotypes from different populations. Both plants surrounded by siblings and by genotypes from the same population had lower individual fitness and produced fewer flowers and less vegetative biomass as a group. We conclude that genetic relatedness entails decreased individual and group fitness in L. angustifolius. This, together with earlier work, precludes the generalization that kin recognition may act as a widespread, major microevolutionary mechanism in plants.  相似文献   

13.
Kin recognition in an annual plant   总被引:5,自引:0,他引:5  
Kin recognition is important in animal social systems. However, though plants often compete with kin, there has been as yet no direct evidence that plants recognize kin in competitive interactions. Here we show in the annual plant Cakile edentula, allocation to roots increased when groups of strangers shared a common pot, but not when groups of siblings shared a pot. Our results demonstrate that plants can discriminate kin in competitive interactions and indicate that the root interactions may provide the cue for kin recognition. Because greater root allocation is argued to increase below-ground competitive ability, the results are consistent with kin selection.  相似文献   

14.
Kin-directed affiliative behavior is widespread in social animals and kin selection theory suggests that such behavior increases fitness of the performer and is thus adaptive. Allopreening in birds is an altruistic behavior as it involves cleaning body parts that cannot be cleaned by self-preening. In this study, we investigated the effects of genetic relatedness on allopreening behavior among juveniles of the Bengalese finch Lonchura striata domestica shortly after the cessation of parental care. Nestlings were cross-fostered in order to distinguish the effects of genetic relatedness (sharing genetic parents) from the effects of familiarity (sharing rearing environment). Preening bouts toward siblings were more frequent and of longer duration than toward non-siblings. The frequency and duration of physical contact within a preening bout did not differ between siblings and non-siblings. In addition, the frequency and duration of preening bouts did not differ between the juveniles that were reared by the same foster parents and between those that were not. Our results suggest that Bengalese finch juveniles recognized siblings and performed affiliative behavior based on genetic similarity rather than familiarity.  相似文献   

15.
Multiple paternity and kin recognition mechanisms in a guppy population   总被引:2,自引:0,他引:2  
Hain TJ  Neff BD 《Molecular ecology》2007,16(18):3938-3946
Help directed toward kin (nepotism) is an important example of social behaviour. Such helping behaviour requires a mechanism to distinguish kin from nonkin. The prevailing kin recognition hypothesis is that when familiarity is a reliable cue of relatedness, other mechanisms of recognition will not evolve. However, when familiarity is an unreliable cue of relatedness, kin recognition by phenotype matching is instead predicted to evolve. Here we use genetic markers to show that guppies (Poecilia reticulata) from a population in a tributary of the Paria River in Trinidad are characterized by a high degree of multiple mating with 95% of broods having more than one sire and some dams having offspring sired by six males. These levels of multiple mating are the highest reported among live-bearing fishes. The mean relatedness of brood-mates was 0.36 (as compared to 0.5 for full-siblings). Therefore, familiarity does not seem to be a reliable mechanism to assess full-sibling relatedness. Using two-choice behavioural trials, we found that juveniles from this population use both phenotype matching and familiarity to distinguish kin from nonkin. However, we did not find strong evidence that the guppies use these mechanisms to form shoals of related individuals as adults, which is similar to results from other guppy populations in Trinidad. The use of both familiarity and phenotype matching is discussed in the context of the Paria River guppy population's mating system and ecology. Overall, these data provide support for the kin recognition hypothesis and increase our understanding of the evolution of kin recognition systems.  相似文献   

16.
Although workers might increase their inclusive fitness by favoringcloser over more distant kin, evidence suggest that nepotismgenerally does not occur within colonies of social insects.It has been suggested that this may be due to the cost of recognitionerrors. We tested whether recognition occurs in a system wherea better than random ability to recognize kin should be selected for. Using DNA microsatellites, we show that sexuals of theArgentine ant Linepithema humile fail to use genetic cues toavoid sib-mating. When offspring of two queens were allowedto mate, the percentage of matings among siblings was not significantlylower than expected under the hypothesis of random mating.The finding that sexuals fail to use genetic cues to avoid sib-matings cannot be attributed to the cost of recognitionerrors because any recognition system that would lead to abetter than random ability to avoid sib-mating should be selectedfor when there are costs to inbreeding. These data are thusconsistent with the view that kin recognition mediated solelyby genetic cues might be intrinsically error prone within coloniesof social insects.  相似文献   

17.
The assessment of relatedness is a key determinant in the evolution of social behavior in primates. Humans are able to detect kin visually in their own species using facial phenotypes, and facial resemblance in turn influences both prosocial behaviors and mating decisions. This suggests that cognitive abilities that allow facial kin detection in conspecifics have been favored in the species by kin selection. We investigated the extent to which humans are able to recognize kin visually by asking human judges to assess facial resemblance in 4 other primate species (common chimpanzees, western lowland gorillas, mandrills, and chacma baboons) on the basis of pictures of faces. Humans achieved facial interspecific kin recognition in all species except baboons. Facial resemblance is a reliable indicator of relatedness in at least chimpanzees, gorillas, and mandrills, and future work should explore if the primates themselves also share the ability to detect kin facially.  相似文献   

18.
Hain TJ  Neff BD 《Current biology : CB》2006,16(18):1807-1811
Kin selection theory has been one of the most significant advances in our understanding of social behavior . However, the discovery of widespread promiscuity has challenged the evolutionary importance of kin selection because it reduces the benefit associated with helping nestmates . This challenge would be resolved if promiscuous species evolved a self-referent kin-recognition mechanism that enables individuals to differentiate kin and nonkin . Here, we take advantage of an asymmetry in the level of promiscuity among males of alternative life histories in the bluegill sunfish (Lepomis macrochirus). We show that, as a consequence of this asymmetry, offspring of "parental" males have a high level of relatedness to nestmates, whereas offspring of "cuckolder" males have a low level of relatedness to nestmates. We find that offspring of parentals do not use a direct recognition mechanism to discriminate among nestmates, whereas offspring of cuckolders use kin recognition by self-referent phenotype matching to differentiate between kin and nonkin. Furthermore, we estimate that the cost of utilizing such self-referent kin recognition is equivalent to a relatedness (R) of at least 0.06. These results provide compelling evidence for adaptive use of kin recognition by self-referent phenotype matching and confirm the importance of kinship in social behavior.  相似文献   

19.
Kin recognition is a critical element to kin cooperation, and in vertebrates, it is primarily based on associative learning. Recognition of socially unfamiliar kin occurs rarely, and it is reported only in vertebrate species where promiscuity prevents recognition of first‐order relatives. However, it is unknown whether the recognition of socially unfamiliar kin can evolve in monogamous species. Here, we investigate whether genetic relatedness modulates aggression among group members in Siberian jays (Perisoreus infaustus). This bird species is genetically and socially monogamous and lives in groups that are formed through the retention of offspring beyond independence, and the immigration of socially unfamiliar nonbreeders. Observations on feeders showed that genetic relatedness modulated aggression of breeders towards immigrants in a graded manner, in that they chased most intensely the immigrant group members that were genetically the least related. However, cross‐fostering experiments showed that breeders were equally tolerant towards their own and cross‐fostered young swapped as nestlings. Thus, breeders seem to use different mechanisms to recognize socially unfamiliar individuals and own offspring. As Siberian jays show a high degree of nepotism during foraging and predator encounters, inclusive fitness benefits may play a role for the evolution of fine‐scale kin recognition. More generally, our results suggest that fine‐graded kin recognition can evolve independently of social familiarity, highlighting the evolutionary importance of kin recognition for social species.  相似文献   

20.
The ability to recognize kin is an important element in social behavior and can lead to the evolution of altruism. Recently, it has been shown that plants are capable of kin recognition through root interactions. Here we tested for kin recognition in a North American species of Impatiens that has a high opportunity of growing with kin and responds strongly to aboveground competition. We measured how the plants responded to the aboveground light quality cues of competition and to the presence of root neighbors and determined whether the responses depended on whether the neighbors were siblings or strangers. The study families were identified by DNA sequencing as members of the same species, provisionally identified as Impatiens pallida (hereafter I. cf. pallida). We found that I. cf. pallida plants were capable of kin recognition, but only in the presence of another plant's roots. Several traits responded to relatedness in shared pots, including increased leaf to root allocation with strangers and increased stem elongation and branchiness in response to kin, potentially indicating both increased competition toward strangers and reduced interference (cooperation) toward kin. Impatiens cf. pallida responded to both competition cues simultaneously, with the responses to the aboveground competition cue dependent on the presence of the belowground competition cue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号