首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M. Schmid  W. Krone 《Chromosoma》1976,56(4):327-347
In early spermatids of Urodeles the chromosome segments bearing constitutive heterochromatin are localized in one half of the round nucleus; this region becomes the basal part of the long nucleus of the spermatozoon. The euchromatic chromosome segments extend toward the anterior nuclear pole in a bouquet configuration (Macgregor and Walker, 1973). In the course of spermiohistogenesis, one of the heterochromatic regions (the acrosomal chromocenter) migrates from the basal part to the anterior half of the spermatid nucleus. This heterochromatic block is identical with a species-specific, definite C-band in the karyotype. This relationship between the acrosomal chromocenter and a specific chromosomal C-band was established in Triturus cristatus, T. marmoratus, T. alpestris and Cynops pyrrhogaster. In closely related species this particular C-band lies on similar chromosomes. — While the spermatid nucleus still retains its round shape the acrosomal chromocenter despiralizes into a long heterochromatic thread (acrosomal thread). Precisely at the position of this thread the nucleus evaginates and acquires a pear-like shape. During the elongation of the nuclear protrusion the acrosomal thread remains associated with the anterior end. At termination of spermiogenesis it lies closely below the acrosome in the tip of the spermatozoon. Spontaneous aberrations which affect the acrosomal chromocenter or the thread lead to the development of spermatozoa with defective tips. — Several euchromatic segments, interspersed between the heterochromatic segments, can be recognized in the completely despiralized acrosomal thread. Genes responsible for the morphogenetic activities of both, the acrosomal chromocenter and the acrosomal thread, in the development of the spermtip, might be localized in these interspersed euchromatic segments. The existence in higher vertebrates of an acrosomal chromocenter or an equivalent chromosomal region is discussed.Presented in partial fulfilment of the requirements for the degree of Doctor rer. nat., University of Ulm  相似文献   

2.
The heterochromatin in Indian muntjac (Muntiacus muntjak) is located at the periphery of primary constrictions of all the chromosomes. The X chromosome contains significantly larger amounts of heterochromatin than the rest of the complement by C-banding technique. However, the small portion of C-band region was found to be resistant by restriction endonuclease HaeIII (5'...GG decreases CC...3') and was clearly visible on the nucleus. Therefore, the position of this large heterochromatic segment is examined at somatic metaphases. The distribution of the heterochromatin of the X chromosome observed in Indian muntjac is contrary to the general pattern observed in other species, i.e., the chromosomes consisting greater amount of heterochromatin are located more peripherally than those with lesser amount. However, the smaller Y chromosome (Y1) is frequently found at the periphery. The present findings suggest that the role of heterochromatin organization in the nucleus vary between different heterochromatic segments of the same species and vary from species to species.  相似文献   

3.
The pairing behavior of the sex chromosomes in male and female individuals representing seven species of Peromyscus was analyzed by electron microscopy of silver-stained zygotene and pachytene configurations. Six species possess submetacentric or metacentric X chromosomes with heterochromatic short arms. Sex-chromosome pairing in these species is initiated during early pachynema at an interstitial position on the X and Y axes. Homologous synapsis then progresses in a unidirectional fashion towards the telomeres of the X short arm and the corresponding arm of the heterochromatic Y chromosome. The distinctive pattern of synaptic initiation allowed a late-synapsing bivalent in fetal oocytes to be tentatively identified as that of the X chromosomes. In contrast to the other species, Peromyscus megalops possesses an acrocentric X chromosome and a very small Y chromosome. Sex-chromosome pairing in this species is initiated at the proximal telomeric region during late zygonema, and then proceeds interstitially towards the distal end of the Y chromosome. These observations suggest that the presence of X short-arm heterochromatin and corresponding Y heterochromatin interferes with late-zygotene alignment of the pairing initiation sites, thereby delaying XY synaptic initiation until early pachynema. The pairing initiation sites are conserved in the vicinity of the X and Y centromeres in Peromyscus, and consequently the addition of heterochromatin during sex-chromosome evolution essentially displaces these sites to an interstitial position.  相似文献   

4.
The arrangement of chromosomes in the elongated sperm nuclei of chicken was studied using fluorescence in situ hybridization with probes specific for telomeres of all chromosomes, a microchromosome, the long arm of chromosome 6, the large heterochromatic block on the Z-chromosome, and the same heterochromatic block plus subtelomeric sites on macrochromosomes 1–4. The positions of all probes vary from one sperm to another. No order in chromosome arrangement is apparent. It is suggested that large chromosome size and small chromosome number correlate with constant positions of chromosomes and vice versa. Based on the known quantity of repetitive units of the repeat on the Z-chromosome, the degree of compaction of chromatin in the chicken sperm nucleus is estimated as ca 0.7 Mb/μm. As judged from the length of the heterochromatic region of the Z-chromosome at the lampbrush stage, the total length of the Z-chromosome in mature sperm is 2.5–4 times that of the sperm nucleus. Received: 15 December 1997; in revised form: 24 March 1998 / Accepted: 14 April 1998  相似文献   

5.
D. F. Eberl  B. J. Duyf    A. J. Hilliker 《Genetics》1993,134(1):277-292
Constitutive heterochromatic regions of chromosomes are those that remain condensed through most or all of the cell cycle. In Drosophila melanogaster, the constitutive heterochromatic regions, located around the centromere, contain a number of gene loci, but at a much lower density than euchromatin. In the autosomal heterochromatin, the gene loci appear to be unique sequence genes interspersed among blocks of highly repeated sequences. Euchromatic genes do not function well when brought into the vicinity of heterochromatin (position-effect variegation). We test the possibility that the blocks of centromeric heterochromatin provide an environment essential for heterochromatic gene function. To assay directly the functional requirement of autosomal heterochromatic genes to reside in heterochromatin, the rolled (rl) gene, which is normally located deep in chromosome 2R heterochromatin, was relocated within small blocks of heterochromatin to a variety of euchromatic positions by successive series of chromosomal rearrangements. The function of the rl gene is severely affected in rearrangements in which the rl gene is isolated in a small block of heterochromatin, and these position effects can be reverted by rearrangements which bring the rl gene closer to any large block of autosomal or X chromosome heterochromatin. There is some evidence that five other 2R heterochromatic genes are also affected among these rearrangements. These findings demonstrate that the heterochromatic genes, in contrast to euchromatic genes whose function is inhibited by relocation to heterochromatin, require proximity to heterochromatin to function properly, and they argue strongly that a major function of the highly repeated satellite DNA, which comprises most of the heterochromatin, is to provide this heterochromatic environment.  相似文献   

6.
We used fluorescence in situ hybridization to identify and map the position of B chromosomes (supernumerary chromosomes) within maize sperm cells. Observations on over 1,000 sperm cells from several genotypes show that, on average, the B chromosomes are positioned in the tip one-fourth of the sperm nucleus two-thirds of the time. In contrast, the centromeres and knobs of the A chromosomes (the normal set) are not restricted to the tip portion of the nucleus. To our knowledge, this is the first example of specific chromosome positioning within a plant gamete. Studies on nuclear architecture of somatic cells in both plants and animals suggest that chromosome behavior and gene expression may correlate with chromosome position within the nucleus. The functional significance of nonrandom positioning of the B chromosomes within maize sperm is as yet unclear. Received: 10 May 2000 / Revision accepted: 6 September 2000  相似文献   

7.
Constitutive heterochromatin is crucial for the integrity of chromosomes and genomic stability. Here, we show that the chromatin remodelling complex NoRC, known to silence a fraction of rRNA genes, also establishes a repressive heterochromatic structure at centromeres and telomeres, preserving the structural integrity of these repetitive loci. Knockdown of NoRC leads to relaxation of centromeric and telomeric heterochromatin, abnormalities in mitotic spindle assembly, impaired chromosome segregation and enhanced chromosomal instability. The results demonstrate that NoRC safeguards genomic stability by coordinating enzymatic activities that establish features of repressive chromatin at centromeric and telomeric regions, and this heterochromatic structure is required for sustaining genomic integrity.  相似文献   

8.
In mature sperm the normal nucleosomal packaging of DNA found in somatic and meiotic cells is transformed into a highly condensed form of chromatin which consists mostly of nucleoprotamines. Although sperm DNA is highly condensed it is nevertheless packaged into a highly defined nuclear architecture which may be organized by the heterochromatic chromocenter. One major component of heterochromatin is the heterochromatin protein 1 which is involved in epigenetic gene silencing. In order to investigate the possible involvement of heterochromatin protein in higher order organization of sperm DNA we studied the localization of the murine homologue of heterochromatin protein 1, M31, during chromatin reorganization in male germ cell differentiation. Each cell type in the testis showed a unique distribution pattern of M31. Colocalization to the heterochromatic regions were found in Sertoli cells, in midstage pachytene spermatocytes, and in round spermatids in which M31 localizes to the centromeric chromocenter. M31 cannot be detected in elongated spermatids or mature spermatozoa immunocytologically, but could be detected in mature spermatozoa by Western blotting. We suggest that M31, a nuclear protein involved in the organization of chromatin architecture, is involved in higher order organization of sperm DNA.  相似文献   

9.
The number and associations of heterochromatin chromocenters, nucleoli, centromeres and telomeres were studied in the nucleus of different somatic cells of Mus domesticus. Fibroblasts of the cell line 3T3, kidney cells (primary culture), and bone marrow cells were used. The above mentioned nuclear and chromosome markers were identified by DAPI/actinomycin D, indirect immunofluorescence with anti-centromere antibodies, silver impregnation for nucleolar proteins and fluorescence in situ hybridisation (FISH) with telomeric probes. The quantitative analysis of the nuclei showed that the pericentromeric heterochromatin is organised in about 18 chromocenters per nucleus in the 3T3 cells, and about seven in kidney and bone marrow cells, having generally a peripheral distribution in the nucleus of all the studied cells. Several aggregated centromeres were participating in each of the chromocenters, about four centromeres per 3T3 cell and about six centromeres per kidney and bone marrow cells. Some of the chromocenters were also in close association with nucleoli. The number of telomeric labels per nucleus was as expected for each chromosome set (2n = 68-70 and 2n = 40). About half of the telomeric signals were loosely aggregated within the heterochromatic blocks while the rest were distributed in the nucleus as unrelated units not bound with chromocenters. The three cell types have complex nuclear territories formed by different chromosomal domains: the pericentromeric heterochromatin, centromeres, proximal telomeres and nucleoli. With the exception of some bone marrow cells, we have not found a nuclear polarisation of the analysed chromosomal markers compatible with the Rabl configuration. However, Rabl anaphasic polarisation allows the contact of centromeric regions making possible that centromeric associations arise. If in addition, associative elements such as constitutive heterochromatin or nucleoli are close to the centromeric regions, like in Mus domesticus chromosomes, then the associations might be consolidated and persist until the interphase. These associations may be the origin of the nuclear domains described here for Mus domesticus somatic cells.  相似文献   

10.
There are numerous examples of the regular segregation of achiasmate chromosomes at meiosis I in Drosophila melanogaster females. Classically, the choice of achiasmate segregational partners has been thought to be independent of homology, but rather made on the basis of availability or similarities in size and shape. To the contrary, we show here that heterochromatic homology plays a primary role in ensuring the proper segregation of achiasmate homologs. We observe that the heterochromatin of chromosome 4 functions as, or contains, a meiotic pairing site. We show that free duplications carrying the 4th chromosome pericentric heterochromatin induce high frequencies of 4th chromosome nondisjunction regardless of their size. Moreover, a duplication from which some of the 4th chromosome heterochromatin has been removed is unable to induce 4th chromosome nondisjunction. Similarly, in the absence of either euchromatic homology or a size similarity, duplications bearing the X chromosome heterochromatin also disrupt the segregation of two achiasmate X chromosome centromeres. Although heterochromatic regions are sufficient to conjoin nonexchange homologues, we confirm that the segregation of heterologous chromosomes is determined by size, shape, and availability. The meiotic mutation Axs differentiates between these two processes of achiasmate centromere coorientation by disrupting only the homology-dependent mechanism. Thus there are two different mechanisms by which achiasmate segregational partners are chosen. We propose that the absence of diplotene-diakinesis during female meiosis allows heterochromatic pairings to persist until prometaphase and thus to co-orient homologous centromeres. We also propose that heterologous disjunctions result from a separate and homology-independent process that likely occurs during prometaphase. The latter process, which may not require the physical association of segregational partners, is similar to those observed in many insects, in Saccharomyces cerevisiae and in C. elegans males. We also suggest that the physical basis of this process may reflect known properties of the Drosophila meiotic spindle.  相似文献   

11.
The location of centromeric protein CENP-B and telomeric protein TRF2/MTBP in the mouse spermatogenic line has been studied using indirect immunofluorescent and immunoelectron microscopy. CENP-B localized to the heterochromatic parts of the nuclei at meiotic stages. A clearly distinct chromocenter forms in the nucleus at stages 3-4 of spermatid maturation; CENP-B localizes in it and in the area adjacent to the future acrosome. CENP-B localization in the subacrosomal area and in the chromocenters' periphery demonstrates that centromeres are organized in two groups in mouse spermatozoa, unlike human centromeres. TRF2/MTBP concentrates around the forming chromocenter at spermiogenesis early stages. The TRF2/MTBP main signal migrates into the area of acrosomal membrane at the course of spermatozoon maturation. TRF2/MTBP never localizes inside the synaptonemal complex but can be found in the areas where the synaptonemal complex attaches to the nuclear envelope. At the pachytene and diplotene stages when chromosomes separate from the nuclear envelope, some amount of the protein remains bound to the nuclear membrane while the other part reveals itself in chromosomes. TRF2/MTBP accumulates in the future acrosome from the very beginning of its formation. In the mature spermatozoon TRF2/MTBP decorates the acrosomal membrane as well as spreads in condensed chromatin.  相似文献   

12.
Summary Use of specific stains permits analysis of the frequency of nucleolus-associated heterochromatin in chromosomes 1 and 9 from human fibroblasts. In 81% of interphase nuclei the heterochromatic segment of both No. 1 chromosomes is associated with the nucleolus, while in 19% only one heterochromatic segment shows such an association with the other occupying a random position in the nucleoplasm. The nucleolar association of chromosome 9 heterochromatin is less constant: in 42.3% of the nuclei both segments are associated with the nucleolus, in 39% of the nuclei only one heterochromatic segment presents such an association, and in 18.7% neither of the two heterochromatic segments is in nucleolar association. In 6% of the cells, one or two chromosome 9 heterochromatic segments are in contact with the nuclear membrane.In situ hybridization using tritium-labeled 28S and 18S RNA shows that in the interphase nucleus the acrocentric short arms, carriers of ribosomal cistrons, are associated with the nucleolus.These observations demonstrate the complexity of the nucleolus-associated chromatin which, in addition to segments of chromosomes 1, 9, 13, 14, 15, 21 and 22, may include the Y chromosome. They also confirm that the nucleolus constitutes one of the orientation points determining the relative localization of chromosomes in the interphase nucleus.  相似文献   

13.
Karyotypes of more than 120 species of 33 genera of the Palearctic blackflies (Simuliidae) were studied on squashed acetoorcein stained preparations of salivary gland polytene chromosomes in larvae. In the course of evolution of the family, a significant complication was noticed in the morphology of centromere regions of polytene chromosomes. In plesiomorphic species, centromeres are not pronounced morphologically and the general picture does not differ from that of other bands and interbands of the polytene chromosome. In species with apomorphic characters, a distinct precentromeric heterochromatin appears, whose manifestation is responsible for morphological diversity of centromere zones in polytene chromosomes. They are represented either by conspicuous slightly thickened heterochromatic bands or by large amplified blocks of heterochromatin or puff-like structure, being considerably extended as a result of despiralization of precentromeric heterochromatin. There are species, which more commonly lack chromocentre and their chromosomes are separated. Some other species have ectopic contacts between pricentromeric heterochromatin. In some species, this heterochromatin is organized as a compact chromocentre. This has been found only in representatives of southern latitudes, most frequently in evolutionarily young species with narrow specialization.  相似文献   

14.
In polytene chromosomes of D. melanogaster the heterochromatic pericentric regions are underreplicated (underrepresented). In this report, we analyze the effects of eu-heterochromatic rearrangements involving a cluster of the X-linked heterochromatic (Xh) Stellate repeats on the representation of these sequences in salivary gland polytene chromosomes. The discontinuous heterochromatic Stellate cluster contains specific restriction fragments that were mapped along the distal region of Xh. We found that transposition of a fragment of the Stellate cluster into euchromatin resulted in its replication in polytene chromosomes. Interestingly, only the Stellate repeats that remain within the pericentric Xh and are close to a new eu-heterochromatic boundary were replicated, strongly suggesting the existence of a spreading effect exerted by the adjacent euchromatin. Internal rearrangements of the distal Xh did not affect Stellate polytenization. We also demonstrated trans effects exerted by heterochromatic blocks on the replication of the rearranged heterochromatin; replication of transposed Stellate sequences was suppressed by a deletion of Xh and restored by addition of Y heterochromatin. This phenomenon is discussed in light of a possible role of heterochromatic proteins in the process of heterochromatin underrepresentation in polytene chromosomes.  相似文献   

15.
Centromeres at premeiotic interphase are clustered and situated in a small area of the nucleus opposite to the nuclear envelope associated heterochromatic masses. The centromeres may occur singly or they may associate to form a structure composed of 2 or more centromeres. Many centromere associations are nonhomologous. Interphase centromeres are not attached to the nuclear envelope. — At zygotene and pachytene centromeres are no longer clustered at one pole of the nucleus but rather are distributed throughout the nucleus. Premeiotic associations appear to be resolved prior to meiotic pairing. Only homologous centromere associations occur during zygotene and pachytene. There is no indication that premeiotic centromere associations are involved in prezygotene alignment of homologous chromosomes.  相似文献   

16.
The spermatozoon of Chiton marginatus is a long uniflagellate cell displaying structural features of “modified sperm.” The nucleus presents a conical shape with a long apical cylindrical extension. The chromatin is homogeneously dense. Scattered inside the condensed nucleus, a few nuclear lacunae are visible. The acrosomal complex is lacking. Some mitochondria are located in a laterofrontal structure side by side with the nucleus. The typical midpiece is absent. The cytoplasm forms a thin layer around the nucleus and the mitochondria. The proximal centriole is in a basal nuclear indent. The distal centriole serves to form the axoneme tail with the usual microtubular pattern. During nuclear maturation, the early spermatid nucleus is spherical and contains fine granular chromatin patches. The nuclear envelope shows a deposit of dense material at the base of the nucleus, forming a semicircular invagination occupied by a flocculent mass. In middle spermatid stage, the chromatin gets organized in filaments, coiled as a hank, attached over the inner surface of the basal thickening of the nuclear envelope. The nucleus starts to elongate anteroposteriorly. At the pointed apical portion of the spermatid, a group of microtubules is observed seeming to impose external pressure to the nucleus giving rise to the long apical nuclear point. The mitochondria have a basal position. Late spermatids have an elongated conical nucleus. The chromatin filaments are further condensed, and lacunae appear inside the nucleus. Some mitochondria migrate to a lateral position.  相似文献   

17.
Human autoantibodies were used to localize centromere proteins by immunoelectron microscopy, immunofluorescence, and confocal microscopy in isolated cells and in cryosections of rabbit testis. A computer-assisted three-dimensional reconstruction of the positions and sizes of fluorescent spots allowed us to follow their movements during the different phases of spermiogenesis. In very young spermatids, the centromeres were distributed within a space separated from both the external nuclear limits and the nuclear core. They moved towards the nuclear center in cap phase spermatids, where they clustered into a few large centromeric masses. In preelongating spermatids, the immunolabeled proteins were dispersed within an equatorial area, where they formed one large mass. In late spermatids, the mass moved towards the posterior part of the nucleus, and, in the spermatozoon, the two basal knobs located at the base of the nuclei were the only strongly immunolabeled structures, while no labeling of the main part of the nucleus was observed. Since the number of centromeres remained close to the number of chromosomes until the cap phase of spermatid differentiation, we hypothesize that the labeling of young spermatids corresponds to centrometric proteins associated with their specific DNA counterparts, while the centromere proteins, possibly detached from their DNA loci, were released from nuclei of old spermatids in the same way as are histones and transition proteins.  相似文献   

18.
Metaphase chromosomes prepared from colcemid-treated mouse L929 cells by non-ionic detergent lysis exhibit distinct heterochromatic centromere regions and associated kinetochores when viewed by whole mount electron microscopy. Deoxyribonuclease I treatment of these chromosomes results in the preferential digestion of the chromosomal arms leaving the centromeric heterochromatin and kinetochores apparently intact. Enrichment in centromere material after DNase I digestion was quantitated by examining the increase in 10,000xg pellets of the 1.691 g/cc satellite DNA relative to main band DNA. This satellite species has been localized at the centromeres of mouse chromosomes by in situ hybridization. From our analysis it was determined that DNase I digestion results in a five to six-fold increase in centromeric material. In contrast to the effect of DNase I, micrococcal nuclease was found to be less selective in its action. Digestion with this enzyme solubilized both chromosome arms and centromeres leaving only a small amount of chromatin and intact kinetochores.  相似文献   

19.
Actin was localized in testicular spermatids and in ionophore-treated ejaculated sperm of boar by use of a monoclonal anti-actin antibody labeled with colloidal gold. With the on-grid postembedding immunostaining of Lowicryl K4M sections, actin was identified in the subacrosomal region of differentiating spermatids, in the microfilaments of the surrounding Sertoli cells, and in the myoid cells of the tubular wall. Ejaculated sperm, labeled with the preembedding method, showed actin between the plasma membrane and the outer acrosomal membrane of the equatorial segment. Indirect immunofluorescence was positive in the equatorial segment and in the acrosomal cap of intact sperm, whereas reacted sperm at the anterior head region retained fluorescence only in the inner acrosomal membrane. Rhodamine-phalloidin failed to stain intact and reacted sperm. The distribution of actin in sperm head membranes (inner acrosomal membrane, membranes of the equatorial segment), which are retained after the acrosome reaction, is discussed.  相似文献   

20.
In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号