首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate dehydrogenase (GDH) (EC 1.4.1.3 [EC] .) purified from greentobacco callus mitochondria was activated markedly by Ca2$ inthe amination reaction. This activation was detectable evenat concentrations below 5 µM Ca2$. Saturation curves for the three substrates of the aminationreaction showed normal Michaelis-Menten kinetics in the presenceof 1 mM of Ca2$, but pronounced substrate inhibition occurredwithout Ca2$. The effect of Ca2$ was chiefly on the maximalvelocity. The saturation curve for NH4Cl in the presence of Ca2$ was modulatedby a change in pH. The apparent Km value for NH4Cl markedlydecreased whereas that for -ketoglutarate increased slightlywhen the pH was raised from 7.3 to 9.0. In contrast, the Kmfor NADH was little affected by raising the pH. The characteristicof GDH which increases its affinity for NH4Cl when the pH israised may be compatible with the detoxification of ammonia. 1 Present address: Mochida Pharmaceutical Co., Ltd. (Received August 24, 1981; Accepted November 28, 1981)  相似文献   

2.
Incorporation of 54Mn into Tris (pH 8.8, 1 hr)-washed chloroplastsand oxygen evolving activity were stimulated by DPIP treatmentand light-reactivation, but inhibited by atebrin, DCCD, gramicidinJ, DCMU and EDTA. Omission of DTT on the light-reactivationresulted in accumulation or deposit of Mn in chloroplasts whichhad no function for the recovery of oxygen-evolving activity.The chlorophyll fluorescence quenched by Tris-washing was restoredby DPIP-treatment and light-reactivation. The chloroplast structure,monitored by its packed volume and optical density at 750 nm,changed reversibly with inhibition and DPIP-treatment. The actionspectrum of light-reactivation suggested that the effectivelight-receptor might be photosystem II. 1 Present address: Department of Biological Science, TsukubaUniversity, Niihari, Ibaragi 300-31, Japan. (Received January 7, 1976; )  相似文献   

3.
Low concentrations of ammonia and methylamine greatly increaseCl influx into Chara corallina. Both amines have theirmaximum effect at pH 6.5–7.5. The amine stimulation ofCl influx is small below about pH 5.5. Above pH 8.5 theremay be inhibition of influx by amines. Concentrations of 10–25µM ammonia are sufficient to cause the maximum stimulationof Cl influx; the corresponding methylamine concentrationsare 0.1–0.2 mM. It is concluded that entry of amine cations(NH4$ and CH3NH3$), rather than unionized bases (NH3 and CH3NH2),causes Cl transport to be increased. Increases in rates of Cl transport are not necessarilyaccompanied by effects on HCO3$ assimilation and OH efflux.Measurements of localized pH differences at the cell surfaceand of circulating electric currents in the bathing solutionshow that these phenomena are only significantly affected byammonia at or above 50 µM and by methylamine at or above1.0 mM. The significance of the effects of amines is assessedin relation to current ideas about transport of Cl, HCO3,and OH.  相似文献   

4.
In apple fruit, active ATP-dependent microsomal Ca2$ uptakeand respiration-dependent mitochondrial Ca2$ uptake were observed. The mitochondrial Ca2$ uptake was depressed by the calmodulinantagonists chlorpromazine hydrochloride (CPZ) and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamidehydrochloride (W-7). The Ca2$-ATPase from apple mitochondriawas also inhibited by CPZ or W-7. The apparent Km value forCa2$ in mitochondrial Ca2$ uptake (Km=0.35 mM) was similar tothat of mitochondrial Ca2$-ATPase (Km=0.32 mM). The inhibitoryeffect of W-7 on the activity of the mitochondrial Ca2$ uptakewas closely correlated with the inhibition by W-7 of mitochondrialCa2$-ATPase (r=0.996). These findings indicate that the mitochondrialuptake of Ca2$ in apple fruit depends on the calmodulin-mediatedactivation of Ca2$-ATPase. The microsomal Ca2$ uptake was depressed by CPZ, suggestingthat the microsomal Ca2$ uptake may also be modulated by calmodulin. 1 Contribution No. C-72, Fruit Tree Research Station. (Received June 7, 1982; Accepted October 19, 1982)  相似文献   

5.
Oxygen-evolution activity of spinach chloroplasts was investigatedby washing chloroplasts with 0.8M Tris buffer containing 20%acetone. This inactivitation was easily removed by two successivetreatments, dark- and light-reactivations. The first treatmentwas dark-reactivation step, rewashing inactivated chloroplastswith reduced DPIP (DPIP treatment). The second one was a light-reactivatedchloroplasts with incubating chloroplasts with Mn2+, Ca2+, dithiothreitoland bovine serum albumin under ilumination. Both light- and dark-reactivation treatments were required toregain oxygen-evolution activity of Tris-acetone-washed chloroplasts,which is characteristic of such chloroplasts. However, in Tris-washedchloroplasts considerable activity was recovered by dark-reactivationalone. Manganese and calcium contents of Tris-acetone-washed chloroplastswere compared with those of chloroplasts obtained by other preparations. Tris-acetone washing was presumed to inhibit the oxygen-evolutionsite of Photo-systetm II by affecting Mn, Ca and other substancesin chloroplasts. The inhibition site was estimated from a changein fluorescence yield of chlorophyll and the effect of artificialelectron donor specific for Photosystem II on NADP photoreductionactivity. (Received August 20, 1973; )  相似文献   

6.
Intact chloroplasts (about 70% Class I chloroplasts) isolatedfrom spinach leaves incorporated 150 nmoles of [1-14C] acetateinto fatty acids per mg chlorophyll in 1 hr at pH 8.3, 25°Cand 25,000 lux. On electron and phase-contrast microscopiescombined with hypotonic treatment of chloroplasts, this syntheticactivity was shown to be proportional to the percentage of ClassI chloroplasts in the preparation. Light was necessary for thesynthesis, the activity in the complete reaction mixture inthe dark being only 2% of that in the light. The synthetic activityincreased with increasing intensities of light to reach saturationat 6,000 lux. CoA and ATP were most effective as cofactors,HCO3, HPO42–, Mg2$ and Mn2$ were less effective.ATP could be replaced by ADP in the presence of Pi, suggestingpossible supply of ATP by photophosphorylation. Omission ofthe NADPH-generation system and NADH did not affect the synthesis,indicating sufficient provision of endogenous NADPH and NADHin intact chloroplasts under light. Addition of DTE did notcause recovery of the synthetic activity of intact chloroplastsin the dark. 1 Present address: Radioisotope Centre, University of Tokyo,Yayoi, Bunkyo, Tokyo 113, Japan. (Received August 26, 1974; )  相似文献   

7.
SYNOPSIS. Crayfish have a long evolutionary history in temperatefresh water (FW). Ion regulation is challenged by low externalconcentrations of Na, Cl, and Ca (<1 mM). In intermolt theprimary concern is Na and Cl balance; around ecdysis the emphasisswitches to Ca regulation as the cuticle is decalcified/calcified.Compared with marine crustaceans, intermolt crayfish maintaina reduced extracellular (EC) osmolality and have lower permeabilityto both ions and water. Hyperregulation involves active branchialuptake of Na and Cl and the unique ability to produce a hypotonicurine. Ion uptake involves apical electroneutral ion exchange(Na$ for H$; Cl for HCO3–; counterions providedfrom CO2 via carbonic anhydrase) followed by active basolateraltransport of Na via the Na pump, with Cl following passively.Reabsorption of 95% of filtered electrolytes at the antennalgland (kidney) involves similar subcellular mechanisms in amorphologically differentiated region of the distal tubule.Intermolt crayfish exhibit negative Ca balance (passive effluxunopposed by uptake) tolerable in view of the large cuticularCaCO3 reserve. In premolt, cuticular Ca is reabsorbed. A smallamount is stored as gastroliths, the remainder is lost via branchialexcretion and in the discarded exuviae. At ecdysis, FW uptakegenerates the physical force for shedding, leaving the crayfishwith dilute hemolymph and a Ca deficiency. Levels of EC Na andCl are restored by intensive postmolt branchial uptake. Mineralizationof the soft exoskeleton involves remobilization of stored Caand branchial uptake of Ca and HCO3. Transepithelial Ca transportinvolves Ca2$ ATPase and Ca2$/Na$ exchange. The importance ofexternal electrolytes and pH in postmolt ion regulation is explored,as are some allometric considerations.  相似文献   

8.
Activity of glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase, EC 1.1.1.49 [EC] ) preparation from sweet potatoroot tissue was markedly altered in the presence of variousions. Cations or anions were effective in the following order:Na$, K$>Tris$>NH4$>Mg2$>Ca2$, or Cl>NO3,HPO42–>SO42–>HCO3. Activity was inhibitedat high concentrations of Ca2$, and HCO3,. In an investigationon the dependence of the activity on pH, two activity peakswere clearly observed at low ionic strength. Ionic strength altered both the Km and Vmax for glucose 6-phosphate(G6P). A Lineweaver-Burk plot for the enzyme, with respect toG6P, showed a bimodal nature at low ionic strength; suggestingnegative cooperativity. Deviation from linearity of the plotwas less with an increase in the ionic strength. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku, Tokyo 113. (Received September 18, 1971; )  相似文献   

9.
Chemical Composition of Bleeding Xylem Sap from Kiwifruit Vines   总被引:5,自引:0,他引:5  
A study of the chemical composition and charge balance was madeof bleeding xylem sap collected from excised one-year-old extensionshoots of healthy, Mn-deficient, Mn-toxic and Zn-deficient kiwifruitvines (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson)immediately prior to leafburst. The exudates were analysed formacronutrient cations and anions, trace elements, amino acids,organic acids and sugars. Major charged species measured wereCa (13.3 mM), K (8.9 mM), Mg (5.6 mM), malate (12.5 mM) andphosphate (5.8 mM). Glutamine (12 mM) was the predominant Ncarrier identified, accounting for 58 per cent of the totalN followed by NO2-N (4.5 per cent), NH4+-N (3.5 per cent)and arginine-N (2.9 per cent). Approximately 22 per cent ofthe N was in a hydrolysable proteinaceous fraction comprisingmainly glutamine and glutamate. Eighteen free proteinaceousamino acids were idetified in sap, the most abundant being glutamine,glutamic acid, valine, isoleucine and phenylalanine. Computersimulation of the chemical composition predicted that in additionto hydrated cations, ion pairs formed between inorganic components(SO42–, HPO42–, H2PO4) and cations (Ca2+,Mg2+, Mn2+), plus metal-organic ligand complexes (Ca Malate,Zn Malate, FeCit, CuHis, CuGln) are important species involvedin translocation. The solubility product of hydroxyapatite wasexceeded in all exudates although in vitro precipitation wasnot observed. To achieve electroneutrality with the componentsmeasured, however, formation of precipitate precursors (hydroxyapatitenuclei) had to be assumed. Irregularities in Mn nutrition (butnot Zn) were clearly indicated by the elemental compositionof exudate suggesting the use of sap analysis as a possiblepre-season indicator of nutritional status for this species. Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson, kiwifruit, xylem sap composition, trace metals, amino acids, organic acids  相似文献   

10.
Photosynthetically competent chloroplasts were isolated fromcells of Euglena gracilis Z grown photoautotrophically in 1.5%CO2. The isolated chloroplasts were intact and substantiallyfree from cytosolic, mitochondrial and microbody materials.The effects of some compounds on the activity of photosynthetic14CO2 fixation were examined. The optimal pH and sorbitol concentrationwere 8.0 and 0.33 M, respectively. The chloroplasts requireda high level of P, (5 to 20 mM) for the maximal rate of photosynthesis.They were insusceptible to 10 mM of free Mg2+. ATP, ADP andAMP at 1 to 5 mM notably stimulated photosynthesis, althoughhigh concentrations of AMP were unfavorable. In the assay mediumdeveloped for this study, the chloroplasts exhibited photosyntheticactivity of 120µmoles-mg–1 Chl-h–1 at 30?C. Chloroplasts could also be isolated from cells grown under ordinaryair. The rate of photosynthetic 14CO2 fixation at 1 mM NaHl4CO3was higher in these chloroplasts than in those isolated fromcells grown in 1.5% CO2, whereas at 10 mM NaHl4CO3, the ratesof the two types of chloroplasts were nearly the same. Theseresults suggest that the CO2 concentration given during growthof the algal cells affects the affinity for dissolved inorganiccarbon at the chloroplast level. (Received March 30, 1987; Accepted August 17, 1987)  相似文献   

11.
Photosynthetic oxygen evolution by photosystem II particleswas inactivated by treatment with NaCl, NH2OH or high pH. Whenthe degree of inactivation was compared with the degree of releasefrom the particles of Mn and three polypeptides having molecularmasses of 33, 24 and 18kdaltons, two types of inactivation werefound: one, brought about with 960 mM NaCl, was related to therelease of the 24 kdalton polypeptide, and the other, broughtabout with 1.5 mM NH2OH or high pH, seemed to be related tothe release of Mn. 1Present address: Department of Chemistry, Faculty of Science,Toho University, Miyama 2-2-1, Funabashi 274, Japan. (Received January 31, 1983; Accepted March 28, 1983)  相似文献   

12.
DNA-dependent RNA polymerase I(A) in cauliflower inflorescenceis exclusively solubilised when the tissue is homogenized withTGMED-buffer (50 mM Tris-HCl pH 8.0, 5 mM MgCl2 0.1 mM EDTA,1 mM dithiothreitol, 25% glycerol) containing 0.6 M (NH4)2SO4and 20% Polyclar-AT (polyvinypyrrolidone). (Received April 19, 1977; )  相似文献   

13.
Despite their relevance for neuronal Ca2+-induced Ca2+ release (CICR), activation by Ca2+ of ryanodine receptor (RyR) channels of brain endoplasmic reticulum at the [ATP], [Mg2+], and redox conditions present in neurons has not been reported. Here, we studied the effects of varying cis-(cytoplasmic) free ATP concentration ([ATP]), [Mg2+], and RyR redox state on the Ca2+ dependence of endoplasmic reticulum RyR channels from rat brain cortex. At pCa 4.9 and 0.5 mM adenylylimidodiphosphate (AMP-PNP), increasing free [Mg2+] up to 1 mM inhibited vesicular [3H]ryanodine binding; incubation with thimerosal or dithiothreitol decreased or enhanced Mg2+ inhibition, respectively. Single RyR channels incorporated into lipid bilayers displayed three different Ca2+ dependencies, defined by low, moderate, or high maximal fractional open time (Po), that depend on RyR redox state, as we have previously reported. In all cases, cis-ATP addition (3 mM) decreased threshold [Ca2+] for activation, increased maximal Po, and shifted channel inhibition to higher [Ca2+]. Conversely, at pCa 4.5 and 3 mM ATP, increasing cis-[Mg2+] up to 1 mM inhibited low activity channels more than moderate activity channels but barely modified high activity channels. Addition of 0.5 mM free [ATP] plus 0.8 mM free [Mg2+] induced a right shift in Ca2+ dependence for all channels so that [Ca2+] <30 µM activated only high activity channels. These results strongly suggest that channel redox state determines RyR activation by Ca2+ at physiological [ATP] and [Mg2+]. If RyR behave similarly in living neurons, cellular redox state should affect RyR-mediated CICR. Ca2+-induced Ca2+ release; Ca2+ release channels; endoplasmic reticulum; thimerosal; 2,4-dithiothreitol; ryanodine receptor  相似文献   

14.
Because the activity of thesodium pump (Na-K-ATPase) influences the secretion of aldosterone, wedetermined how extracellular potassium (Ko) and calciumaffect sodium pump activity in rat adrenal glomerulosa cells. Sodiumpump activity was measured as ouabain-sensitive 86Rb uptakein freshly dispersed cells containing 20 mM sodium as measured withsodium-binding benzofluran isophthalate. Increasing Ko from4 to 10 mM in the presence of 1.8 mM extracellular calcium (Cao) stimulated sodium pump activity up to 165% andincreased intracellular free calcium as measured with fura 2. Increasing Ko from 4 to 10 mM in the absence ofCao stimulated the sodium pump ~30% and did not increaseintracellular free calcium concentration ([Ca2+]i). In some experiments, addition of1.8 mM Cao in the presence of 4 mM Ko increased[Ca2+]i above the levels observed in theabsence of Cao and stimulated the sodium pump up to 100%.Ca-dependent stimulation of the sodium pump by Ko andCao was inhibited by isradipine (10 µM), a blocker of L-and T-type calcium channels, by compound 48/80 (40 µg/ml) andcalmidizolium (10 µM), which inhibits calmodulin (CaM), and by KN-62(10 µM), which blocks some forms of Ca/CaM kinase II (CaMKII).Staurosporine (1 µM), which effectively blocks most forms of proteinkinase C, had no effect. In the presence of A-23187, a calciumionophore, the addition of 0.1 mM Cao increased[Ca2+]i to the level observed in the presenceof 10 mM Ko and 1.8 mM Cao and stimulated thesodium pump 100%. Ca-dependent stimulation by A-23187 and 0.1 mMCao was not reduced by isradipine but was blocked by KN-62.Thus, under the conditions that Ko stimulates aldosteronesecretion, it stimulates the sodium pump by two mechanisms: directbinding to the pump and by increasing calcium influx, which isdependent on Cao. The resulting increase in[Ca2+]i may stimulate the sodium pump byactivating CaM and/or CaMKII.

  相似文献   

15.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

16.
We investigatedthe relationship between voltage-operatedCa2+ channel current and thecorresponding intracellular Ca2+concentration([Ca2+]i)change (Ca2+ transient) in guineapig gastric myocytes. Fluorescence microspectroscopy was combined withconventional whole cell patch-clamp technique, and fura 2 (80 µM) wasadded to CsCl-rich pipette solution. Step depolarization to 0 mVinduced inward Ca2+ current(ICa) andconcomitantly raised[Ca2+]i.Both responses were suppressed by nicardipine, an L-typeCa2+ channel blocker, and thevoltage dependence of Ca2+transient was similar to the current-voltage relation ofICa. When pulseduration was increased by up to 900 ms, peakCa2+ transient increased andreached a steady state when stimulation was for longer. The calculatedfast Ca2+ buffering capacity(B value), determined as the ratio ofthe time integral ofICa divided bythe amplitude of Ca2+ transient,was not significantly increased after depletion of Ca2+ stores by the cyclicapplication of caffeine (10 mM) in the presence of ryanodine (4 µM).The addition of cyclopiazonic acid (CPA, 10 µM), a sarco(endo)plasmicreticulum Ca2+-ATPase inhibitor,decreased B value by ~20% in areversible manner. When KCl pipette solution was used,Ca2+-activatedK+ current[IK(Ca)]was also recorded during step depolarization. CPA sensitivelysuppressed the initial peak and oscillations of IK(Ca) withirregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightlycoupled to ICaduring depolarization, and global[Ca2+]iis not significantly affected byCa2+-inducedCa2+ release from sarcoplasmicreticulum during depolarization.

  相似文献   

17.
The rat dorsal root ganglion (DRG) Ca2+-sensing receptor (CaR) was stably expressed in-frame as an enhanced green fluorescent protein (EGFP) fusion protein in human embryonic kidney (HEK)293 cells, and is functionally linked to changes in intracellular Ca2+ concentration ([Ca2+]i). RT-PCR analysis indicated the presence of the message for the DRG CaR cDNA. Western blot analysis of membrane proteins showed a doublet of 168–175 and 185 kDa, consistent with immature and mature forms of the CaR.EGFP fusion protein, respectively. Increasing extracellular [Ca2+] ([Ca2+]e) from 0.5 to 1 mM resulted in increases in [Ca2+]i levels, which were blocked by 30 µM 2-aminoethyldiphenyl borate. [Ca2+]e-response studies indicate a Ca2+ sensitivity with an EC50 of 1.75 ± 0.10 mM. NPS R-467 and Gd3+ activated the CaR. When [Ca2+]e was successively raised from 0.25 to 4 mM, peak [Ca2+]i, attained with 0.5 mM, was reduced by 50%. Similar reductions were observed with repeated applications of 10 mM Ca2+, 1 and 10 µM NPS R-467, or 50 and 100 µM Gd3+, indicating desensitization of the response. Furthermore, Ca2+ mobilization increased phosphorylated protein kinase C (PKC) levels in the cells. However, the PKC activator, phorbol myristate acetate did not inhibit CaR-mediated Ca2+ signaling. Rather, a spectrum of PKC inhibitors partially reduced peak responses to Cae2+. Treatment of cells with 100 nM PMA for 24 h, to downregulate PKC, reduced [Ca2+]i transients by 49.9 ± 5.2% (at 1 mM Ca2+) and 40.5 ± 6.5% (at 2 mM Ca2+), compared with controls. The findings suggest involvement of PKC in the pathway for Ca2+ mobilization following CaR activation. desensitization; protein kinase C  相似文献   

18.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

19.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

20.
Ionic composition of the vacuolar sap of Noctiluca miliariswas as follows: [Na+] = 487.3 mM, [K+]=24.1 mM, [Ca2+]=6.6 mM,[Mg2+]=2.8 mM, [Cl]=500mM, [NH4+]=15–25 mM, and[SO42–]=undetectable. To measure the vacuolar pH of singleliving cells, a pH-sensitive glass microelectrode was used.The vacuolar pH value was 3.50 ±0.18. When the cellswere transferred from normal sea water into osmotically adjusted50% sea water for one day, the vacuolar ion concentrations remainedalmost constant. Upon immersing the cells in osmotically unadjustedsea water of various concentrations for one day, the observedincrements or decrements of the vacuolar ion concentrationscould be accounted for largely by the migration of water outof or into the cells. The intrinsic ionic composition of thevacuole seems to be constant against changes in ion concentrationsof the bathing medium. (Received October 20, 1975; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号