首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.  相似文献   

2.
Recent experiments have demonstrated that the behavior of the interphase microtubule array is cell-type specific: microtubules in epithelial cells are less dynamic than microtubules in fibroblasts (Pepper-kok et al., 1990; Wadsworth and McGrail, 1990). To determine which parameters of microtubule dynamic instability behavior are responsible for this difference, we have examined the behavior of individual microtubules in both cell types after injection with rhodamine-labeled tubulin subunits. Individual microtubules in both cell types were observed to grow, shorten, and pause, as expected. The average amount of time microtubules remained within the lamellae of CHO fibroblasts, measured from images acquired at 10-s intervals, was significantly shorter than the average amount of time microtubules remained within lamellae of PtK1 epithelial cells. Further analysis of individual microtubule behavior from images acquired at 2-s intervals reveals that microtubules in PtK1 cells undergo multiple brief episodes of growth and shortening, resulting in little overall change in the microtubule network. In contrast, microtubules in lamellae of CHO fibroblasts are observed to undergo fewer transitions which are of longer average duration, resulting in substantial changes in the microtubule network over time. A small subset of more stable microtubules was also detected in CHO fibroblasts. Quantification of the various parameters of dynamic instability behavior from these sequences demonstrates that the average rates of both growth and shortening are significantly greater for the majority of microtubules in fibroblasts than for microtubules in epithelial cells (19.8 +/- 10.8 microns/min, 32.2 +/- 17.7 microns/min, 11.9 +/- 6.5 microns/min, and 19.7 +/- 8.1 microns/min, respectively). The frequency of catastrophe events (1/interval between catastrophe events) was similar in both cell types, but the frequency of rescue events (1/time spent shrinking) was significantly higher in PtK1 cells. Thus, individual microtubules in PtK1 lamellae undergo frequent excursions of short duration and extent, whereas most microtubules in CHO lamellae undergo more extensive excursions often resulting in the appearance or disappearance of microtubules within the field of view. These observations provide the first direct demonstration of cell-type specific behavior of individual microtubules in living cells, and indicate that these differences can be brought about by modulation of the frequency of rescue. These results directly support the view that microtubule dynamic instability behavior is regulated in a cell-type specific manner.  相似文献   

3.
Structural plugs at microtubule ends may regulate polymer dynamics in vitro   总被引:1,自引:0,他引:1  
Microtubules contain in their lumens distinct structures (plugs) that influence their dynamic behavior in vitro. As observed by electron microscopy, plugs are stain-occluding structures 10-30 nm in length that occur along the lengths and at the ends of microtubules. Plugs occur at a frequency of 20-40% at the ends of microtubules assembled from cycled microtubule protein containing MAPs. While the composition of plugs is not known, preliminary evidence suggests that they are accretions of tubulin, that they are labile, and that they are more common in preparations containing MAPs. When polymers are induced to depolymerize by endwise subunit dissociation, the frequency of plugged microtubule ends increases transiently, suggesting that plugs temporarily stabilize microtubules. The functional significance of plugs may be that they prevent the sudden complete loss of microtubules through catastrophic disassembly. It is possible that plugs, by slowing the rate of disassembly, enable a polymer to add GTP-tubulin subunits, thereby forming a stabilizing GTP-cap. These observations suggest that plugs may stabilize polymers and account for the frequent transitions from shortening to growing phases that characterize dynamic instability.  相似文献   

4.
End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells and purified systems, the molecular mechanisms involved in its specific activity are still unclear. Here, we describe how EB1 regulates the dynamics and structure of microtubules assembled from pure tubulin. We found that EB1 stimulates spontaneous nucleation and growth of microtubules, and promotes both catastrophes (transitions from growth to shrinkage) and rescues (reverse events). Electron cryomicroscopy showed that EB1 induces the initial formation of tubulin sheets, which rapidly close into the common 13-protofilament-microtubule architecture. Our results suggest that EB1 favours the lateral association of free tubulin at microtubule-sheet edges, thereby stimulating nucleation, sheet growth and closure. The reduction of sheet length at microtubule growing-ends together with the elimination of stressed microtubule lattices may account for catastrophes. Conversely, occasional binding of EB1 to the microtubule lattice may induce rescues.  相似文献   

5.
Soluble immune response suppressor (SIRS) is a product of concanavalin A-stimulated murine T cells that, when activated or oxidized by macrophages or H2O2 (SIRSox), suppresses in vitro immune responses and inhibits cell division by normal and neoplastic cells. SIRSox is inactivated by a variety of electron donors, which suggests that SIRSox may be an oxidizing agent. Incubation of lymphocytes with SIRSox, but not with SIRS, partially reversed concanavalin A-mediated inhibition of capping of membrane immunoglobulin on B cells, and disrupted the cytoplasmic array of microtubules visualized by fluorescence microscopy. SIRSox also inhibited microtubule assembly in vitro in a concentration-dependent manner. Inactivation of SIRSox by dithiothreitol prevented SIRSox-mediated reversal of inhibition of capping and inhibition of microtubule assembly. These results reveal a pattern of SIRSox activity similar to sulfhydryl-dependent cytoskeletal disrupting agents (e.g., N-ethylmaleimide, cytochalasin A, p-benzoquinone), and suggest that SIRSox-mediated suppression of proliferation may involve interference with sulfhydryl-dependent cytoskeletal events critical for cell division.  相似文献   

6.
《The Journal of cell biology》1994,127(6):1965-1971
Microtubules are constructed from alpha- and beta-tubulin heterodimers that are arranged into protofilaments. Most commonly there are 13 or 14 protofilaments. A series of structural investigations using both electron microscopy and x-ray diffraction have indicated that there are two potential lattices (A and B) in which the tubulin subunits can be arranged. Electron microscopy has shown that kinesin heads, which bind only to beta-tubulin, follow a helical path with a 12-nm pitch in which subunits repeat every 8-nm axially, implying a primarily B-type lattice. However, these helical symmetry parameters are not consistent with a closed lattice and imply that there must be a discontinuity or "seam" along the microtubule. We have used quick-freeze deep-etch electron microscopy to obtain the first direct evidence for the presence of this seam in microtubules formed either in vivo or in vitro. In addition to a conventional single seam, we have also rarely found microtubules in which there is more than one seam. Overall our data indicates that microtubules have a predominantly B lattice, but that A lattice bonds between tubulin subunits are found at the seam. The cytoplasmic microtubules in mouse nerve cells also have predominantly B lattice structure and A lattice bonds at the seam. These observations have important implications for the interaction of microtubules with MAPs and with motor proteins, and for example, suggest that kinesin motors may follow a single protofilament track.  相似文献   

7.
Telomeres are essential repetitive sequences at the ends of chromosomes that prevent chromosome fusion and degradation. We have successfully recapitulated these two protective functions in vivo and in vitro by incubating blunt-end DNA constructs having vertebrate telomeric ends in Xenopus eggs and egg extracts. Constructs with telomeric ends are stable as linear molecules; constructs with non-telomeric ends undergo intramolecular fusion. In extracts, 99.8% of the telomeric constructs from 78 to 700 bp in length are assembled into 'model telomeres' in <5 min and have an extra-polated half-life of >3.5 years. Non-telomeric constructs circularize with first order kinetics and a half-life of 4 h. In living eggs the telomeric constructs are protected from fusion and degradation. The stability of the telomeric constructs is not due to covalent processing. Extract can protect approximately 100 pM telomeric ends (equivalent to 1.7 x 10(7) ends/egg) even in the presence of a 20-fold excess of double-stranded telomeric DNA, suggesting that protection requires end-specific factors. Constructs with (TTGGGG) n repeats are unstable, suggesting that short tracts of this and other telomere-like sequences found within human telomeres could lead to genome instability if exposed by partial telomere erosion during aging.  相似文献   

8.
In an analogous manner to protein ubiquitination, The C terminus of Atg8p, a yeast protein essential for autophagy, conjugates to a head group of phosphatidylethanolamine via an amide bond. Though physiological role of this reaction is assigned to membrane organization during autophagy, its molecular details are still unknown. Here, we show that Escherichia coli cells coexpressed Atg8p, Atg7p (E1), and Atg3p (E2) allowed to form conjugate of Atg8p with endogenous PE. Further, we established an in vitro Atg8p-PE reconstitution system using purified Atg8pG116, Atg7p, Atg3p, and PE-containing liposomes, demonstrating that the Atg7p and the Atg3p are minimal catalysts for Atg8p-PE conjugate reaction. Efficiency of this lipidation reaction depends on the state of the substrate, PE (phospholipid bilayer and its lipid composition). It is also suggested that the lipidation induces a conformational change in the N-terminal region of Atg8p. In vitro system developed here will provide a powerful system for further understanding the precise role of lipidation and interaction of two ubiquitin-like systems essential for autophagy.  相似文献   

9.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.  相似文献   

10.
ABSTRACT

Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell.  相似文献   

11.
Microtubules that are free of microtubule-associated protein undergo dynamic changes at steady state, becoming longer but fewer in number with time through a process which was previously assumed to be based entirely on mechanisms of subunit exchange at polymer ends. However, we recently demonstrated that brain and erythrocyte microtubules are capable of joining end-to-end and suggested that polymer annealing may also affect the dynamic behavior of microtubules in vitro (Rothwell, S. W., W. A. Grasser, and D. B. Murphy, 1986, J. Cell Biol. 102:619-627). In the present study, we first show that annealing is a general property of cytoplasmic microtubules and is not a specialized characteristic of erythrocyte microtubules by documenting annealing between tryosinolated and detyrosinolated brain microtubules. We then examine the contributions of polymer annealing and subunit exchange to microtubule dynamics by analyzing the composition and length of individual polymers in a mixture of brain and erythrocyte microtubules by immunoelectron microscopy. In concentrated preparations of short-length microtubules at polymer-mass steady state, annealing was observed to be the principal factor responsible for the increase in polymer length, whereas annealing and subunit exchange contributed about equally to the reduction in microtubule number.  相似文献   

12.
Epithelial polarization and neuronal outgrowth require the assembly of microtubule arrays that are not associated with centrosomes. As these processes generally involve contact interactions mediated by cadherins, we investigated the potential role of cadherin signalling in the stabilization of non-centrosomal microtubules. Here we show that expression of cadherins in centrosome-free cytoplasts increases levels of microtubule polymer and changes the behaviour of microtubules from treadmilling to dynamic instability. This effect is not a result of cadherin expression per se but depends on the formation of cell-cell contacts. The effect of cell-cell contacts is mimicked by application of beads coated with stimulatory anti-cadherin antibody and is suppressed by overexpression of the cytoplasmic cadherin tail. We therefore propose that cadherins initiate a signalling pathway that alters microtubule organization by stabilizing microtubule ends.  相似文献   

13.
The involvement of high molecular weight microtubule-associated proteins (HMW-MAPs) in the process of taxol-induced microtubule bundling has been studied using immunofluorescence and electron microscopy. Immunofluorescence microscopy shows that HMW-MAPs are released from microtubules in granulosa cells which have been extracted in a Triton X-100 microtubule-stabilizing buffer (T-MTSB), unless the cells are pretreated with taxol. 1.0 microM taxol treatment for 48 h results in microtubule bundle formation and the retention of HMW-MAPs in these cells upon extraction with T-MTSB. Electron microscopy demonstrates that microtubules in control cytoskeletons are devoid of surface structures whereas the microtubules in taxol-treated cytoskeletons are decorated by globular particles of a mean diameter of 19.5 nm. The assembly of 3 X cycled whole microtubule protein (tubulin plus associated proteins) in vitro in the presence of 1.0 microM taxol, results in the formation of closely packed microtubules decorated with irregularly spaced globular particles, similar in size to those observed in cytoskeletons of taxol-treated granulosa cells. Microtubules assembled in vitro in the absence of taxol display prominent filamentous extensions from the microtubule surface and center-to-center spacings greater than that observed for microtubules assembled in the presence of taxol. Brain microtubule protein was purified into 6 s and HMW-MAP-enriched fractions, and the effects of taxol on the assembly and morphology of these fractions, separately or in combination, were examined. Microtubules assembled from 6 s tubulin alone or 6 s tubulin plus taxol (without HMW-MAPs) were short, free structures whereas those formed in the presence of taxol from 6 s tubulin and a HMW-MAP-enriched fraction were extensively crosslinked into aggregates. These data suggest that taxol induces microtubule bundling by stabilizing the association of HMW-MAPs with the microtubule surface which promotes lateral aggregation.  相似文献   

14.
Microtubules are highly dynamic structures that play a major role in a wide range of processes, including cell morphogenesis, cell division, intracellular transport and signaling. The recent identification in plants of proteins involved in microtubule organization has begun to reveal how cytoskeleton dynamics are controlled.  相似文献   

15.
The efficient inhibition of angiogenesis is considered as a promising strategy for the treatment of angiogenesis-related diseases including cancer. Herein, we report that embellistatin, a bicyclic ketone compound known as a microtubule polymerization inhibitor, exhibits anti-angiogenic activity. Embellistatin inhibited in vitro angiogenesis of bovine aortic endothelial cells (BAECs) such as bFGF-induced invasion and tube formation as well as bFGF-induced mouse corneal angiogenesis in vivo. Notably, embellistatin exhibited stronger inhibition activity for the growth of BAECs than that of normal and cancer cell lines. Cell cycle analysis revealed that the compound arrests cell cycle at G2/M phase, which is associated with the increased expression of p21(WAF1) and p53 partly. These results demonstrate that embellistatin may serve the basis for the development of new anti-angiogenic agents.  相似文献   

16.
The yeast Saccharomyces cerevisiae has two genes for α-tubulin, TUB1 and TUB3, and one β-tubulin gene, TUB2. The gene product of TUB3, Tub3, represents ~10% of α-tubulin in the cell. We determined the effects of the two α-tubulin isotypes on microtubule dynamics in vitro. Tubulin was purified from wild-type and deletion strains lacking either Tub1 or Tub3, and parameters of microtubule dynamics were examined. Microtubules containing Tub3 as the only α-tubulin isotype were less dynamic than wild-type microtubules, as shown by a shrinkage rate and catastrophe frequency that were about one-third of that for wild-type microtubules. Conversely, microtubules containing Tub1 as the only α-tubulin isotype were more dynamic than wild-type microtubules, as shown by a shrinkage rate that was 50% higher and a catastrophe frequency that was 30% higher than those of wild-type microtubules. The results suggest that a role of Tub3 in budding yeast is to control microtubule dynamics.  相似文献   

17.
In vitro reconstitution of ferritin   总被引:6,自引:0,他引:6  
  相似文献   

18.
ObjectivesSETDB1 is a methyltransferase responsible for the methylation of histone H3‐lysine‐9, which is mainly related to heterochromatin formation. SETDB1 is overexpressed in various cancer types and is associated with an aggressive phenotype. In agreement with its activity, it mainly exhibits a nuclear localization; however, in several cell types a cytoplasmic localization was reported. Here we looked for cytoplasmic functions of SETDB1.MethodsSETDB1 association with microtubules was detected by immunofluorescence and co‐sedimentation. Microtubule dynamics were analysed during recovery from nocodazole treatment and by tracking microtubule plus‐ends in live cells. Live cell imaging was used to study mitotic kinetics and protein–protein interaction was identified by co‐immunoprecipitation.ResultsSETDB1 co‐sedimented with microtubules and partially colocalized with microtubules. SETDB1 partial silencing led to faster polymerization and reduced rate of catastrophe events of microtubules in parallel to reduced proliferation rate and slower mitotic kinetics. Interestingly, over‐expression of either wild‐type or catalytic dead SETDB1 altered microtubule polymerization rate to the same extent, suggesting that SETDB1 may affect microtubule dynamics by a methylation‐independent mechanism. Moreover, SETDB1 co‐immunoprecipitated with HDAC6 and tubulin acetylation levels were increased upon silencing of SETDB1.ConclusionsTaken together, our study suggests a model in which SETDB1 affects microtubule dynamics by interacting with both microtubules and HDAC6 to enhance tubulin deacetylation. Overall, our results suggest a novel cytoplasmic role for SETDB1 in the regulation of microtubule dynamics.

SETDB1 association with microtubules inhibits microtubule polymerization and enhances their instability. SETDB1 may affect the microtubules by interacting with HDAC6 to enhance HDAC6 tubulin deacetylation activity.  相似文献   

19.
AKAP350 is a multiply spliced type II protein kinase A-anchoring protein that localizes to the centrosomes in most cells and the Golgi apparatus in epithelial cells. Multiple studies suggest that AKAP350 is involved in microtubule nucleation at the centrosome. Our previous studies demonstrated that AKAP350 was necessary for the maintenance of Golgi apparatus integrity. These data suggested that AKAP350 might be necessary for normal cytoskeletal interactions with the Golgi. To examine the relationship of AKAP350 with the microtubule cytoskeleton, we analyzed the effect of the depletion of AKAP350 on microtubule regrowth after nocodazole treatment in HeLa cells. The decrease in AKAP350 expression with short interfering RNA induced a delay in microtubule elongation with no effect on microtubule aster formation. In contrast, overexpression of the centrosomal targeting domain of AKAP350 elicited alterations in aster formation, but did not affect microtubule elongation. RNA interference for AKAP350 also induced an increase in cdc42 activity during microtubule regrowth. Our data suggest that AKAP350 has a role in the remodeling of the microtubule cytoskeleton.  相似文献   

20.
The simple mechanistic and functional division of the kinesin family into either active translocators or non-motile microtubule depolymerases was initially appropriate but is now proving increasingly unhelpful, given evidence that several translocase kinesins can affect microtubule dynamics, whilst non-translocase kinesins can promote microtubule assembly and depolymerisation. Such multi-role kinesins act either directly on microtubule dynamics, by interaction with microtubules and tubulin, or indirectly, through the transport of other factors along the lattice to the microtubule tip. Here I review recent progress on the mechanisms and roles of these translocase kinesins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号