共查询到20条相似文献,搜索用时 0 毫秒
1.
Putney JW McKay RR 《BioEssays : news and reviews in molecular, cellular and developmental biology》1999,21(1):38-46
In the phospholipase C signaling system, Ca(2+) is mobilized from intracellular stores by an action of inositol 1,4,5-trisphosphate. The depletion of intracellular calcium stores activates a calcium entry mechanism at the plasma membrane called capacitative calcium entry. The signal for activating the entry is unknown but likely involves either the generation or release, or both, from the endoplasmic reticulum of some diffusible signal. Recent research has focused on mammalian homologues of the Drosophila TRP protein as potential candidates for capacitative calcium entry channels. This review summarizes current knowledge about the nature of capacitative calcium entry signals, as well as the potential role of mammalian TRP proteins as capacitative calcium entry channel molecules. 相似文献
2.
3.
Capacitative calcium entry in the nervous system 总被引:6,自引:0,他引:6
Putney JW 《Cell calcium》2003,34(4-5):339-344
Capacitative calcium entry is a process whereby the depletion of Ca(2+) from intracellular stores (likely endoplasmic or sarcoplasmic reticulum) activates plasma membrane Ca(2+) channels. Current research has focused on identification of capacitative calcium entry channels and the mechanism by which Ca(2+) store depletion activates the channels. Leading candidates for the channels are members of the transient receptor potential (TRP) superfamily, although no single gene or gene product has been definitively proven to mediate capacitative calcium entry. The mechanism for activation of the channels is not known; proposals fall into two general categories, either a diffusible signal released from the Ca(2+) stores when their Ca(2+) levels become depleted, or a more direct protein-protein interaction between constituents of the endoplasmic reticulum and the plasma membrane channels. Capacitative calcium entry is a major mechanism for regulated Ca(2+) influx in non-excitable cells, but recent research has indicated that this pathway plays an important role in the function of neuronal cells, and may be important in a number of neuropathological conditions. This review will summarize some of these more recent findings regarding the role of capacitative calcium entry in normal and pathological processes in the nervous system. 相似文献
4.
Capacitative calcium entry: sensing the calcium stores 总被引:1,自引:0,他引:1
Putney JW 《The Journal of cell biology》2005,169(3):381-382
A long-standing mystery in the cell biology of calcium channel regulation is the nature of the signal linking intracellular calcium stores to plasma membrane capacitative calcium entry channels. An RNAi-based screen of selected Drosophila genes has revealed that a calcium-binding protein, stromal interaction molecule (STIM), plays an essential role in the activation of these channels and may be the long sought sensor of calcium store content. 相似文献
5.
The intracellular Ca2+ indicator, fura-2, was used to monitor changes in cytosolic [Ca2+] in parotid acinar cells. When parotid cells were incubated in a medium containing low [Ca2+], and [Ca2+] was restored to the physiological range, there was a small increase in cytosolic [Ca2+]. If, however, the cells were first activated by a muscarinic agonist, and receptor activation was terminated before the addition of Ca2+ by the addition of a pharmacological excess of the muscarinic-receptor antagonist atropine, the initial increase in cytosolic [Ca2+] was faster and transiently larger than in the control cells which had not been previously stimulated. This suggested that a stimulation of Ca2+ entry occurred owing to the prior emptying of the agonist-regulated intracellular Ca2+ pool. This extra Ca2+ influx seen in pool-depleted cells persisted even when the interval between the addition of atropine and Ca2+ was increased from 1 to 20 min. Also, when the pool was allowed to refill by adding atropine in the presence of extracellular Ca2+, and Ca2+ was then sequentially removed and restored, the rise in cytosolic [Ca2+] after the addition of extracellular Ca2+ was not rapid, and resembled the increase seen in unstimulated cells. These results indicate that, when the agonist-sensitive Ca2+ pool is emptied by an agonist, Ca2+ influx across the plasma membrane is increased. This influx of Ca2+ occurs independently of the concentrations of inositol phosphates and probably of any second messengers linked directly to receptor activation. It appears rather to be a consequence of the empty state of the Ca2+ pool. Further, we suggest that, whenever the agonist-sensitive Ca2+ pool is emptied by agonist activation, the plasma-membrane permeability to Ca2+ will be increased, and this may account, at least in part, for the phenomenon of receptor-activated Ca2+ entry. 相似文献
6.
This study investigates the involvement of capacitative Ca2+ entry in excitation-contraction coupling in guinea pig gallbladder smooth muscle. Thapsigargin (0.1 nM-1 microM, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor) produced slowly developing sustained tonic contractions in guinea pig isolated gallbladder strips. All contractions approached 50% of the response to carbachol (10 microM) after 55 min. Contractile responses to thapsigargin (1 microM) were abolished in a Ca(2+)-free medium. Subsequent re-addition of Ca2+ (2.5 mM) produced a sustained tonic contraction (99 +/- 6% of the carbachol response). The contractile response to Ca2+ re-addition following incubation of tissues in a Ca(2+)-free bathing solution in the absence of thapsigargin was significantly less than in its presence (79 +/- 4 % vs 100 +/- 7 % of carbachol; p < 0.05). Contractile responses to Ca2+ re-addition following treatment with thapsigargin were attenuated by (a) the L-type voltage-operated Ca2+ channel antagonist, nifedipine (10 microM) and (b) the general inhibitor of Ca2+ entry channels including store-operated channels, SK&F96365 (50 microM and 100 microM). In separate experiments, responses to Ca2+ re-addition were essentially abolished by the tyrosine kinase inhibitor, genistein (100 microM). These results suggest that capacitative Ca2+ entry provides a source of activator Ca2+ for guinea pig gallbladder smooth muscle contraction. Contractile responses to Ca2+ re-addition following depletion of sarcoplasmic reticulum Ca2+ stores with thapsigargin, are mediated in part by Ca2+ entry through voltage-operated Ca2+ channels and by capacitative Ca2+ entry through store-operated Ca2+ channels which can be blocked by SK&F96365. Furthermore, capacitative Ca2+ entry in this tissue may be modulated by tyrosine kinase. 相似文献
7.
Abstract. Adult bone tissue is continuously being remodelled and bone mass is maintained by a balance between osteoclastic bone resorption and osteoblastic bone formation. Alteration of osteoblastic cell proliferation may account in part for lack of balance between these two processes in bone loss of osteoporosis. There is calcium (Ca2+) control in numerous cellular functions; however, involvement of capacitative Ca2+ entry (CCE) in proliferation of bone cells is less well investigated. Objectives: The study described here was aimed to investigate roles of CCE in the proliferation of osteoblast‐like MG‐63 cells. Meterials and Methods: Pharmacological characterizations of CCE were undertaken in parallel, with evaluation of the expression of transient receptor potential canonical (TRPC) channels and of cell proliferation. Results: Intracellular Ca2+ store depletion by thapsigargin induced CCE in MG‐63 cells; this was characterized by a rapid transient increase of intracellular Ca2+ followed by significant CCE, induced by conditions that stimulated cell proliferation, namely serum and platelet‐derived growth factor. Inhibitors of store‐operated Ca2+ channels (2‐APB and SKF‐96365) prevented CCE, while voltage‐dependent Ca2+ channel blockers had no effect. Expression of various TRPC channels was shown in the cells, some having been shown to be responsible for CCE. Voltage‐dependent Ca2+ channel blockers had no effect on osteoblast proliferation while thapsigargin, 2‐APB and SKF‐96395, inhibited it. Cell cycle analysis showed that 2‐APB and SKF‐96395 lengthen the S and G2/M phases, which would account for the reduction in cell proliferation. Conclusions: Our results indicate that CCE, likely attributed to the activation of TRPCs, might be the main route for Ca2+ influx involved in osteoblast proliferation. 相似文献
8.
Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice 总被引:11,自引:0,他引:11 下载免费PDF全文
Leissring MA Akbari Y Fanger CM Cahalan MD Mattson MP LaFerla FM 《The Journal of cell biology》2000,149(4):793-798
Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To elucidate the cellular mechanisms underlying these disturbances, we studied calcium signaling in fibroblasts isolated from mutant PS1 knockin mice. Mutant PS1 knockin cells exhibited a marked potentiation in the amplitude of calcium transients evoked by agonist stimulation. These cells also showed significant impairments in capacitative calcium entry (CCE, also known as store-operated calcium entry), an important cellular signaling pathway wherein depletion of intracellular calcium stores triggers influx of extracellular calcium into the cytosol. Notably, deficits in CCE were evident after agonist stimulation, but not if intracellular calcium stores were completely depleted with thapsigargin. Treatment with ionomycin and thapsigargin revealed that calcium levels within the ER were significantly increased in mutant PS1 knockin cells. Collectively, our findings suggest that the overfilling of calcium stores represents the fundamental cellular defect underlying the alterations in calcium signaling conferred by presenilin mutations. 相似文献
9.
Capacitative calcium entry induces hippocampal long term potentiation in the absence of presenilin-1
Ris L Dewachter I Reversé D Godaux E Van Leuven F 《The Journal of biological chemistry》2003,278(45):44393-44399
Presenilins, whose mutant forms are the most common cause of early onset familial Alzheimer's disease, are involved in two very distinct processes: (i) proteolytic activity as gamma-secretase acting on amyloid precursor protein to produce amyloid peptides and (ii) storage of Ca2+ in the endoplasmic reticulum (ER). In particular, absence of presenilin-1 (PS1) was claimed to potentiate capacitative calcium entry (CCE), i.e. the mechanism of replenishment of ER Ca2+ stores. However, until now, evidence in favor of the latter role has been obtained only in isolated or cultured cells and not on neurons in situ. Here, we studied the strength of the synapses between Schaffer's collaterals and CA1 neurons in hippocampal slices when they were submitted first to Ca(2+)-free medium containing thapsigargin and subsequently to normal artificial cerebrospinal fluid, a procedure known to trigger CCE. We demonstrate that Ca2+ influx via the CCE mechanism is sufficient to trigger robust long term potentiation of the synapses in hippocampal slices from transgenic mice with a postnatal, neuron-specific ablation of PS1, but remarkably not from wild-type mice. Our data establish for the first time in neurons confined in normal neuronal networks that PS1 acts on the refilling mechanism of ER Ca2+ stores. 相似文献
10.
Wang J Shimoda LA Sylvester JT 《American journal of physiology. Lung cellular and molecular physiology》2004,286(4):L848-L858
Mammalian homologs of transient receptor potential (TRP) genes in Drosophila encode TRPC proteins, which make up cation channels that play several putative roles, including Ca2+ entry triggered by depletion of Ca2+ stores in endoplasmic reticulum (ER). This capacitative calcium entry (CCE) is thought to replenish Ca2+ stores and contribute to signaling in many tissues, including smooth muscle cells from main pulmonary artery (PASMCs); however, the roles of CCE and TRPC proteins in PASMCs from distal pulmonary arteries, which are thought to be the major site of pulmonary vasoreactivity, remain uncertain. As an initial test of the possibility that TRPC channels contribute to CCE and Ca2+ signaling in distal PASMCs, we measured [Ca2+]i by fura-2 fluorescence in primary cultures of myocytes isolated from rat intrapulmonary arteries (>4th generation). In cells perfused with Ca2+-free media containing cyclopiazonic acid (10 microM) and nifedipine (5 microM) to deplete ER Ca2+ stores and block voltage-dependent Ca2+ channels, restoration of extracellular Ca2+ (2.5 mM) caused marked increases in [Ca2+]i whereas MnCl2 (200 microM) quenched fura-2 fluorescence, indicating CCE. SKF-96365, LaCl3, and NiCl2, blocked CCE at concentrations that did not alter Ca2+ responses to 60 mM KCl (IC50 6.3, 40.4, and 191 microM, respectively). RT-PCR and Western blotting performed on RNA and protein isolated from distal intrapulmonary arteries and PASMCs revealed mRNA and protein expression for TRPC1, -4, and -6, but not TRPC2, -3, -5, or -7. Our results suggest that CCE through TRPC-encoded Ca2+ channels could contribute to Ca2+ signaling in myocytes from distal intrapulmonary arteries. 相似文献
11.
12.
Martín-Romero FJ Ortíz-de-Galisteo JR Lara-Laranjeira J Domínguez-Arroyo JA González-Carrera E Alvarez IS 《Biology of reproduction》2008,78(2):307-315
Calcium signaling is a cellular event that plays a key role at many steps of fertilization and early development. However, little is known regarding the contribution of extracellular Ca(2+) influx into the cell to this signaling in gametes and early embryos. To better know the significance of calcium entry on oocyte physiology, we have evaluated the mechanism of store-operated calcium entry (SOCE) in human metaphase II (MII) oocytes and its sensitivity to oxidative stress, one of the major factors implicated in the outcome of in vitro fertilization (IVF) techniques. We show that depletion of intracellular Ca(2+) stores through inhibition of sarco(endo)plasmic Ca(2+)-ATPase with thapsigargin triggers Ca(2+) entry in resting human oocytes. Ba(2+) and Mn(2+) influx was also stimulated following inhibition, and Ca(2+) entry was sensitive to pharmacological inhibition because the SOCE blocker 2-aminoethoxydiphenylborate (2-APB) reduced calcium and barium entry. These results support the conclusion that there is a plasma membrane mechanism responsible for the capacitative divalent cation entry in human oocytes. Moreover, the Ca(2+) entry mechanism described in MII oocytes was found to be highly sensitive to oxidative stress. Hydrogen peroxide, at micromolar concentrations that could mimic culture conditions in IVF, elicited an increase of [Ca(2+)](i) that was dependent on the presence of extracellular Ca(2+). This rise was preventable by 2-APB, indicating that it was mainly due to the enhanced influx through store-operated calcium channels. In sum, our results demonstrate the occurrence of SOCE in human MII oocytes and the modification of this pathway due to oxidative stress, with possible consequences in IVF. 相似文献
13.
Wang WH Machaty Z Ruddock N Abeydeera LR Boquest AC Prather RS Day BN 《Molecular reproduction and development》1999,53(1):99-107
The present study examined the mechanism of A23187-induced activation in pig oocytes, with special reference to the effects of extracellular calcium on oocyte activation. The following endpoints were evaluated: intracellular free calcium concentration ([Ca2+]i), intracellular pH ([pH]i), cortical granule (CG) exocytosis, pronuclear formation, and blastocyst development. In experiment one, when oocytes were exposed to 50 microM A23187 for 5 min in a medium with, or without, calcium, a significant (P < 0.004) increase in the [Ca2+]i was observed in medium with calcium but not in medium without calcium. An increased [pH]i (0.08 unit in medium with calcium and 0.13 unit in medium without calcium), cortical granule exocytosis and pronuclear formation were observed in oocytes treated with A23187 irrespective of the presence or absence of calcium in the medium. In experiment two, the effects of treatment time (0, 0.5, 1, 2, and 5 min) on nuclear activation of oocytes with A23187 were further examined in medium with, or without, calcium. It was found that a 2 min treatment activated more (71-74%) oocytes than the other treatments. Treatment for 5 min in medium without calcium resulted in chromatin condensation in some oocytes. Microtubules were not found in these oocytes. In experiment three, developmental ability was examined of the oocytes treated with A23187 in medium with, or without, calcium. In vitro fertilized oocytes were used as a positive control. It was found that 16%, 6% and 38% of the oocytes treated with A23187 in medium with calcium, in medium without calcium, and in vitro fertilized oocytes developed to blastocysts after culture for 7 days, respectively. These results indicate that A23187 can induce pig oocyte activation in calcium-free medium without a typical increase in the [Ca2+]i and that A23187-induced pig oocyte activation is accompanied by an increase in [pH]i. Oocytes activated with A23187 can develop to blastocysts regardless of activation in medium with, or without, calcium. 相似文献
14.
Rosado JA 《American journal of physiology. Cell physiology》2006,291(6):C1104-C1106
This essay examines the historical significance of an APS classic paper that is freely available online: Kwan CY, Takemura H, Obie JF, Thastrup O, and Putney JW Jr. Effects of MeCh, thapsigargin, and La(3+) on plasmalemmal and intracellular Ca(2+) transport in lacrimal acinar cells. Am J Physiol Cell Physiol 258: C1006-C1015, 1990. 相似文献
15.
16.
Caffeine increases the amplitude of the Cl- currents evoked by capacitative Ca2+ entry (CCE) on thapsigargin-treated Xenopus oocytes. The caffeine-induced potentiation of the CCE process appears to rest on two distinct and additive components. The first component involves the cAMP second messenger system since it can be mimicked by either IBMX perfusion or cAMP microinjection into the oocyte and inhibited by the PKA inhibitory peptide i-PKA. The second component, although activatory, is dynamically related to the caffeine-evoked inhibition of InsP3-mediated Ca+ release and may arise from an interaction between caffeine and the InsP3 receptor in the context of a conformational coupling between the InsP, receptor and the channels responsible for CCE. 相似文献
17.
Inhibitory effects of calcium ionophore pretreatment of porcine oocytes on polyspermic fertilization
The present study examined the inhibitory effects of various pretreatment concentrations (0-100 microM) of the calcium ionophore A23187 on polyspermic fertilization and then examined the effect of the maturation period and the time between calcium ionophore treatment and fertilization on the inhibitory effect of calcium ionophore on polyspermic fertilization. In experiment 1, a high concentration of calcium ionophore (100 microM) increased the rate of activated oocytes, but the rate of fertilization declined. On the other hand, when oocytes were treated with a low concentration of calcium ionophore (10 microM), monospermic fertilization was significantly increased (10 microM; 31.3%) (p < 0.05). In experiment 2, oocytes were cultured for various times (0, 0.5, 3, 6 h) after calcium ionophore treatment (10 microM) before fertilization. The highest rate of monospermic fertilization was detected in the oocytes cultured for 6 h after calcium ionophore treatment before fertilization. In experiments 3 and 4, we examined the effect of the maturation period (40 h or 44 h) on the rate of fertilization and blastulation of oocytes pretreated with calcium ionophore. The treatment of oocytes with calcium ionophore significantly decreased the rate of polyspermic fertilization regardless of the maturation period (44 h: with calcium ionophore 26.25% vs without 78.8%; 40 h: with calcium ionophore 37.5% vs without 77.5%); however, calcium ionophore treatment increased the rates of monospermic fertilization and blastulation of the oocytes matured for 44 h, but not those matured for 40 h. In conclusion, activation with a low concentration of calcium ionophore (10 microM) and a further 6 h of culture before fertilization improved the rate of monospermic fertilization and blastulation. 相似文献
18.
Zheng-Wen Nie Li Chen Qiu-Shi Jin Ying-Ying Gao Tao Wang Xia Zhang 《Cell cycle (Georgetown, Tex.)》2017,16(22):2220-2229
Checkpoint 1 (Chk1), as an important member of DNA replication checkpoint and DNA damage response, has an important role during the G2/M stage of mitosis. In this study, we used porcine oocyte as a model to investigate the function of Chk1 during porcine oocyte maturation. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages, mainly localized in the cytoplasm at GV stage and moved to the spindle after germinal vesicle breakdown (GVBD). Chk1 depletion not only induced oocytes to be arrested at MI stage with abnormal chromosomes arrangement, but also inhibited the degradation of Cyclin B1 and decreased the expression of Mitotic Arrest Deficient 2-Like 1 (Mad2L1), one of spindle assembly checkpoint (SAC) proteins, and cadherin 1 (Cdh1), one of coactivation for anaphase-promoting complex/cyclosome (APC/C). Moreover, Chk1 overexpression delayed GVBD. These results demonstrated that Chk1 facilitated the timely degradation of Cyclin B1 at anaphase I (AI) and maintained the expression of Mad2L1 and Cdh1, which ensured that all chromosomes were accurately located in a line, and then oocytes passed metaphase I (MI) and AI and exited from the first meiotic division successfully. In addition, we proved that Chk1 had not function on GVBD of porcine oocytes, which suggested that maturation of porcine oocytes did not need the DNA damage checkpoint, which was different from the mouse oocyte maturation. 相似文献
19.
Transient receptor potential (Trp) channels have been implicated in mediating store- and receptor-activated Ca2+ influx. Different properties of this influx in various cell types may stem from the assembly of these Trp proteins into homo- or heterotetramers or association with other regulatory proteins. We examined the properties of endogenous capacitative Ca2+ entry in PHM1 immortalized human myometrial cells that express endogenous hTrpCs 1, 3, 4, 6, and 7 mRNA and in primary human myocytes. In PHM1 cells, activation of the oxytocin receptor or depletion of intracellular Ca2+ stores with the endoplasmic reticulum calcium pump-inhibitor thapsigargin induced capacitative Ca2+ entry, which was inhibited both by SKF 96365 and gadolinium (Gd3+). Whereas unstimulated cells did not exhibit Sr2+ entry, oxytocin and thapsigargin enhanced Sr2+ entry that was also inhibited by SKF 96365 and Gd3+. In contrast, Ba2+, a poor substrate for Ca2+ pumps, accumulated in these cells in the absence of the capacitative entry stimulus and also after oxytocin and thapsigargin treatment. Both types of entry were markedly decreased by SKF 96365 and Gd3+. The membrane-permeant derivative of diacylglycerol, 1-oleoyl-2-acetyl-sn-glycerol (OAG), elicited oscillatory increases in PHM1 intracellular Ca2+ that were dependent on extracellular Ca2+. These properties were also observed in primary human myocytes. Overexpression of hTrpC3 in PHM1 cells enhanced thapsigargin-, oxytocin-, and OAG-induced Ca2+ entry. These data are consistent with the expression of endogenous hTrpC activity in myometrium. Capacitative Ca2+ entry can potentially contribute to Ca2+ dynamics controlling uterine smooth muscle contractile activity. 相似文献
20.
Germinal vesicles (GVs) in immature mammalian oocytes contain prominent nucleoli whose role in the process of oocyte maturation is not fully understood. Here we report that the microsurgical removal of nucleoli from immature fully grown porcine oocytes permits germinal vesicle breakdown and chromosome condensation and the enucleolated oocytes mature up to the second metaphase. Interestingly, the enucleolation of growing oocytes which, although unable to mature, resulted in germinal vesicle breakdown and the formation of a cluster of condensed chromatin. These results indicate that the nucleolus in fully grown oocytes is dispensable at least for nuclear maturation. On the other hand, the results obtained in growing oocytes suggest the role of the nucleolus in the cell cycle regulation. 相似文献