首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel Brassica napus somatic hybrids have been created through protoplast fusion of B. oleracea var. botrytis and B. rapa var. oleifera genotypes selected for high erucic acid (22:1) content in the seed oil. Fifty amphidiploids (aacc) and one putative hexaploid (aacccc) hybrid were recovered in one fusion experiment. Conversely, only one amphidiploid and numerous regenerates with higher DNA contents were produced in a similar fusion using a different B. rapa partner. Hybridity was confirmed by morphology, isozyme expression, flow cytometry, and DNA hybridization. Analysis of organellar DNA revealed a distinct bias toward the inheritance of chloroplasts from the B. rapa (aa) genome. All amphidiploids set self-pollinated seed. A erucic acid content as high as 57.4% was found in the seed oil of one regenerated plant. Fatty acid composition was stable in the R1 generation and was coupled with increased female fertility. Other novel agronomic characters in the hybrids recovered include large seed size, lodging resistance, and non-shattering seed pods.  相似文献   

2.
Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes   总被引:1,自引:0,他引:1  
An efficient procedure is described for transformation of calli of the monocotyledonous plant Alstroemeria by Agrobacterium rhizogenes. Calli were co-cultivated with A. rhizogenes strain A13 that harbored both a wild-type Ri-plasmid and the binary vector plasmid pIG121Hm, which included a gene for neomycin phosphotransferase II (NPTII) under the control of the nopaline synthase (NOS) promoter, a gene for hygromycin phosphotransferase (HPT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and a gene for -glucuronidase (GUS) with an intron fused to the CaMV 35S promoter. Inoculated calli were plated on medium that contained cefotaxime to eliminate bacteria. Four weeks later, transformed cells were selected on medium that contained 20 mg L–1 hygromycin. A histochemical assay for GUS activity revealed that selection by hygromycin was complete after eight weeks. The integration of the T-DNA of the Ri-plasmid and pIG121Hm into the plant genome was confirmed by PCR. Plants derived from transformed calli were produced on half-strength MS medium supplemented with 0.1 mg L–1 GA3 after about 5 months of culture. The presence of the gusA, nptII, and rol genes in the genomic DNA of regenerated plants was detected by PCR and Southern hybridization, and the expression of these transgenes was verified by RT-PCR.  相似文献   

3.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

4.
Stable co-transformation of maize protoplasts with gusA and neo genes   总被引:10,自引:0,他引:10  
An efficient co-transformation protocol using polyethylene glycol was developed for Zea mays L. (cv. A188 × BMS) protoplasts isolated from suspension culture cells. Co-transformation was accomplished by using plasmid constructions containing -glucuronidase (gusA) or neomycin phosphotransferase (neo) gene coding sequences; both were under control of the CaMV 35S promoter. Protoplast culture and transformation conditions were optimized to assure efficient recovery of transformed cells. The overall efficiency of transformation was 1 × 10–4 (calculated per viable protoplast plated). Among kanamycin-resistant lines, 50% showed a high level of GUS activity (above one unit). Southern blot hybridization confirmed the presence of numerous gusA and neo coding sequences in the maize genome. In two analyzed lines, integrated sequences appeared to be organized in tandem head-to-tail repeats. Results also indicated that the integrated sequences were partially methylated.  相似文献   

5.
6.
Summary Mesophyll protoplasts of tomato (Lycopersicon esculentum Mill. var. cerasiforme) and of an atrazine-resistant biotype of black nightshade, (Solanum nigrum L.), were fused by using polyethylene glycol/dimethyl sulfoxide (PEG/DMSO) solution and three somatic hybrid plants, each derived from a separate callus, were recovered. A twostep selection system was used: (1) protoplast culture medium (modified 8E) in which only tomato protoplasts formed calluses; and (2) regeneration medium (MS2Z) on which only S. nigrum calluses produced shoots. These selective steps were augmented by early isozyme analysis of putative hybrid shoots still in vitro. Phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT) mapped to five loci on four chromosomes in tomato confirmed the hybrid nature of the nuclei of regenerated shoots. The somatic hybrid plants had simple leaves, and intermediate flower and bud morphology, but anthesis was reduced to 5% due to premature bud abscission and the pollen grains were non-viable. Southern DNA blot hybridization using a pea 45 S ribosomal RNA gene probe reconfirmed the hybrid nature of the nuclear genome of the three plants. A 32P-labeled probe of Oenothera chloroplast DNA (cpDNA) hybridized to cpDNA restricted with EcoRI or EcoRV indicated the presence of the tomato cpDNA pattern in all three hybrids. Likewise, the plants were all found to be atrazine sensitive. Analysis with two mitochondrial (mt)DNA-specific probes, maize cytochrome oxidase subunit II and PmtSylSa8 from Nicotiana sylvestris, showed that, in addition to typical mitochondrial rearrangements, specific bands of both parents were present or missing in each somatic hybrid plant.Michigan Agricultural Experiment Station Journal Article No. 12433  相似文献   

7.
Summary Fertile somatic hybrids between Brassica campestris and B. oleracea have been produced by protoplast fusion. Fusion products were identified by their intermediate protoplast morphology. Heterokaryons were isolated either with micropipettes using a micromanipulator or by flow sorting. About 2% of the obtained calli differentiated to shoots. Of the shoots obtained from manually selected heterokaryons, 100% were true hybrids as confirmed by isozyme analysis while 87% of the flow sorted ones showed a hybrid pattern. Ploidy level of the hybrid plants was determined by chromosome counting and relative DNA-content analysis. The sum of the chromosome number (38) from the two fusion partners were found in 30% of the hybrids; 9% had fewer and 61% had more chromosomes. Pollen viability and seed set varied with ploidy level. Compared to natural B. napus, a pollen viability of 52%–93% and a fertility of 1%–40% was found for the somatic hybrids with normal chromosome number. Restriction enzyme analysis of chloroplast-DNA showed that either B. campestris or B. oleracea chloroplasts were present in the somatic hybrid plants. Of 11 hybrid plants 5 had the campestris and 6 had the oleracea type (11 ratio).  相似文献   

8.
In this study, floral spray and floral dip were used to replace the vacuum step in the Agrobacterium-mediated transformation of a superoxide dismutase (SOD) gene into Arabidopsis. The transgene was constructed by using a CaMV 35S promoter to drive a rice cytosolic CuZnSOD coding sequence in Arabidopsis. The transgene construct was developed in binary vectors and mobilized into Agrobacterium. When Arabidopsis plants started to initiate flower buds, the primary inflorescence shoots were removed and then transformed by floral spray or floral dip. More than 300 transgenic plants were generated to assess the feasibility of floral spray used in the in planta transformation. The result indicates that the floral spray method of Agrobacterium can achieve rates of in planta transformation comparable to the vacuum-infiltration and floral dip methods. The floral spray method opens up the possibility of in planta transformation of plant species which are too large for dipping or vacuum infiltration.  相似文献   

9.
Summary Agrobacterium-mediated gene transformation of Populus tremuloides Michx was accomplished by co-cultivation of leaf disks excised from greenhouse plants with Agrobacterium tumefaciens containing a binary Ti-plasmid vector harboring chimeric neomycin phosphotransferase (NPT II) and ß-glucuronidase (GUS) genes. Shoot regeneration in the presence of kanamycin was achieved when thidiazuron (TDZ) was used as a plant growth regulator. Transformation was verified by amplification of NPT II and GUS gene fragments from genomic DNA of transgenic plants with polymerase chain reaction (PCR) and integration of these genes into nuclear genome of transgenic plants was confirmed by genomic Southern hybridization analysis. Histochemical assay revealed the expression of GUS gene in leaf, stem and root tissues of transgenic plants, further confirming the integration and expression of T-DNA in these plants. This protocol allows effective transformation and regeneration of quaking aspen using greenhouse-grown materials as an explant source. Whole plant regeneration from cuttings of fieldgrown mature quaking aspen and hybrid poplar (P. alba x P. grandidentata) was also readily achieved by using this protocol, which represents a potential system for producing transgenic quaking aspen and hybrid poplar of valuable genotypes.Abbreviations AMV RNA4 Alfalfa mosaic virus RNA4 - BA 6-benzyladenine - CaMV cauliflower mosaic virus - 2,4-D 2,4-dichlorophenoxyacetic acid - EDTA ethylenediaminetetraacetic acid - FAA formalin-acetic acid-alcohol - GUS ß-glucuronidase - NAA 1-naphthylacetic acid - NPT II neomycin phosphotransferase II - PCR polymerase chain reaction - SDS sodium dodecyl sulphate - TE Tris-Cl/EDTA - TDZ N-phenyl-N-1,2,3-thiadiazol-5-yl-urea (thidiazuron) - WPM woody plant medium (Lloyd and McCown 1980) - X-GLUC 5-bromo-4-chloro-3-indolyl-ß-glucuronic acid  相似文献   

10.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   

11.
Summary Parameters influencing the stable transformation of Sorghum bicolor protoplasts with a chimeric neomycin phosphotransferase II (NPT II) gene by electroporation were investigated. The mean number of kanamycin-resistant calli produced increased in direct proportion to the concentration of DNA used for transformation. Linearization of the plasmid doubled the mean number of kanamycin-resistant calli produced, while the addition of carrier DNA had no effect. The copy number (1–4) of integrated genes was low compared with that frequently reported for PEG-mediated transformation. Two strategies for transforming protoplasts with a nonselectable, -glucuronidase (GUS) gene were compared. One utilized a plasmid containing a CaMV 35S-NPT II gene covalently linked to a CaMV 35S-GUS gene, and the other strategy utilized the two genes on separate plasmids. DNA from all 77 kanamycin-resistant calli analyzed contained restriction fragments hybridizing to the NPT II probe; approximately 70% of the clones from all transformation treatments contained a 1.7-kb EcoRI/HindIII restriction fragment corresponding to the full-length gene. Of the kanamycin-resistant calli, 38–63% (depending on the transformation treatment) contained GUS-hybridizing fragments, and 8–19% contained the full-length gene. The addition of NPT II and GUS genes on a single plasmid or on separate plasmids did not appear to lead to an appreciable difference in the frequency of cointegration of these genes, although an increased proportion of the plasmid bearing the nonselectable (GUS) gene appeared to favor its cointegration.  相似文献   

12.
Summary An efficient technique was developed for the isolation, culture, transformation and regeneration of protoplasts derived from auxin conditioned Arabidopsis root cultures. On an average 30% of root protoplasts underwent cell division in liquid culture and formed somatic embryolike structures which regenerated to plants without embedding in Ca2+-alginate. The protoplast protocol was applicable to different landraces of Arabidopsis thaliana (L.) Heynh., such as RLD, Columbia or C24. PEG-mediated DNA uptake into protoplasts using different uidA reporter gene constructs yielded transient gene expression in over 25% of treated cells indicating that root-derived protoplasts are suitable recipients for transformation.Abbreviations BA 6-benzylaminopurine - 2,4D 2,4dichlorophenoxyacetic acid - IAA indole-3-acetic acid - ISA indole-3buryric acid - IPAR 6-(,-dimethylallylamino)purine riboside - NAA naphthaleneacetic acid - uidA ß-glucuronidase gene - GUS ß-glucuronidase enzyme - CaMV Cauliflower Mosaic Virus - nos nopaline synthase - MES 2[N-morpholino]ethane-sulfonicacid - PEG polyethylene glycol - X-gluc 5bromo-4-chloro-3-indolyl glucuronide - MUG 4-methyl umbelliferyl glucuronide - MU 4-methylumbelliferone  相似文献   

13.
Summary Mesophyll protoplasts of wild pear (Pyrus communis var. pyraster L., Pomoideae) were chemically fused with cell suspension protoplasts of cherry rootstock Colt (Prunus avium x pseudocerasus, Prunoideae), following an electroporation treatment of the separate parental protoplast systems. Fusion-treated protoplasts were cultured, on modified K8P medium, where it had been previously established that neither parental protoplasts were capable of division. Somatic hybrid calli were recovered and, following caulogenesis on MS medium with zeatin and after rooting of regenerated shoots, complete trees were obtained and grown in vivo. Hybridity of these trees was confirmed based on morphological characters, chromosome complement and isozyme analysis. Two separate cloned lines of this intersubfamilial rootstock somatic hybrid (wild pear (+) Colt cherry) were produced. This is the first report of the production of somatic hybrid plants of two woody species, of agronomic value, within the order Rosales.  相似文献   

14.
Summary White clover (Trifolium repens L.) plants from the cultivars Grasslands Huia and Grasslands Tahora have been transformed using Agrobacterium-mediated T-DNA transfer. Transgenic plants regenerated directly from cells of the cotyledonary axil. To transform white clover, shoot tips from 3 day old seedlings were co-cultivated with A. tumefaciens strain LBA4404 carrying the plasmid vector pPE64. This vector contains the neomycin phosphotransferase II gene (nptII) and -glucuronidase reporter gene (gus) both under the control of the CaMV 35S promoter. Kanamycin-resistant plants regenerated within 42 days after transfer onto selective media. Integration of the nptII and gus genes into the white clover genome was confirmed using Southern blotting, and histochemical analysis indicated that the gus gene was expressed in a variety of tissues. In reciprocal crosses between a primary transformant and a non-transformed plant the introduced gus gene segregated as a single dominant Mendelian trait.Abbreviations BAP 6-benzylaminopurine - NAA -naphthaleneacetic acid - MS Murashige and Skoog - GUS -glucuronidase - X-GLUc 5-bromo-4-chloro-3-indolyl--D-glucuronide - MUG methylumbelliferyl--D-glucuronide - CaMV Cauliflower Mosaic Virus - NPTII neomycin phosphotransferase II - OCS octopine synthase - 4-MU 4-methyl umbelliferone  相似文献   

15.
John Locke 《Genetica》1993,92(1):33-41
Position effect variegation in Drosophila melanogaster is associated with the inability of certain genes to be correctly expressed in a proportion of cells, giving a mosaic phenotype. The lack of expression is thought to be due to alterations in the gene's chromatin structure due to its proximity to a region of heterochromatin. Because of the difficulties involved, there is little biochemical data to support the intuitively appealing model of heterochromatin spreading used to explain this phenomenon.Differences in restriction fragment length were used to distinguish DNA regions from either normal (non-position affected) or rearranged (position affected) chromosomes so as to examine possible changes in gene copy number and the effects of endogenous nucleases. DNA sequences at the breakpoint of In (1)w m4, which variegates for the white gene, were assayed under conditions where the chromatin conformation was altered using second site modifier mutations (Su(var) or En(var)). No change in the DNA sequerice copy number was observed at either chromosome breakpoint, relative to wild type, when either suppressor or enhancer mutations were present. Therefore copy number change, through differential polyploidization or somatic gene loss, is not affected by Su(var) or En(var) induced changes in the chromatin conformation.Initial experiments showed a gross difference in the sensitivity of DNA to endogenous nucleases that appeared associated with Su(var) and En(var) mutations. En(var) mutation bearing samples appeared delayed in the digestion, relative to Su(var). This differential sensitivity seemed to be genome-wide as there was no detectable difference between either breakpoint of In(1)w m4 or the sequences on the homologous w - chromosome. However, after isogenizing the genetic background, the previously noted difference between the Su(var) and En(var) mutations was eliminated. In studies dealing with nuclease digestion of chromatin, the isogenization of genetic background is essential before meaningful comparisons can be made.  相似文献   

16.
Ebmeier A  Allison L  Cerutti H  Clemente T 《Planta》2004,218(5):751-758
The initial step in the synthesis of isoleucine (Ile) is the conversion of threonine to -ketobutyrate. This reaction is carried out by threonine deaminase (TD), which is feedback-regulated by Ile. Mutations in TD that manifest insensitivity to Ile feedback inhibition result in intracellular accumulation of Ile. Previous reports have shown that in planta expression of the wild-type Escherichia coli TD, ilvA, or an Ile-insensitive mutant designated ilvA-466, increased cellular concentrations of Ile. A structural analog of Ile, l-O-methylthreonine (OMT), is able to compete effectively with Ile during translation and induce cell death. It has been postulated that OMT could therefore be utilized as an effective selective agent in plant engineering studies. To test this concept, we designed two binary plasmids that harbored an nptII cassette and either the wild-type ilvA or mutant ilvA-466. The ilvA coding sequences were fused to a plastid transit peptide down stream of a modified 35S CaMV promoter. Tobacco transformations were set up implementing a selection protocol based on either kanamycin or OMT. The ilvA gene was effectively utilized as a selectable marker gene to identify tobacco transformants when coupled with OMT as the selection agent. However, the transformation efficiency was substantially lower than that observed with nptII using kanamycin as the selection agent. Moreover, in a subset of the ilvA transformants and in a majority of the ilvA-466 transgenic lines, a severe off-type was observed under greenhouse conditions that correlated with increased levels of expression of the ilvA transgene.Abbreviations ELISA enzyme-linked immunosorbent assay - Ile isoleucine - OMT l-O-methylthreonine - nptII neomycin phosphotransferase II - TD threonine deaminase  相似文献   

17.
An approach that enables the increase of the quantity of a specific amino acid in crop plants is reported. Oleosin gene from Arabidopsis thaliana or 30K movement protein gene of Tobacco mosaic virus (TMV; genus Tobamovirus) were cloned under the control of napin or hybrid promoters, and in fusion to synthetic poly-histidine (poly-His) sequences for transformation into spring turnip rape (Brassica rapa subsp. oleifera; synonym to B. campestris). The most stable expression cassettes for the poly-His production prior to the plant transformation were selected by analyzing the protein expression in in vitro translation and in transient plant expression systems using GFP as marker. Expression of the poly-His-constructs in transgenic Brassica rapa plants was analyzed using dot and western blotting and PCR. The constructs were stably expressed in the third generation of the transgenic plant lines. Histidine content was measured from the seeds of the transgenic plants, and some plant lines had more than 20% increase in histidine content compared to wild type. The methodology may be widely applicable to increase the content of any amino acid in crop plants including those encoded by rare codons.  相似文献   

18.
Summary Grapevine fanleaf nepovirus (GFLV) is responsible for the economically significant court-noué disease in vineyards. Its genome is made up of two single-stranded RNA molecules (RNA1 and RNA2) which direct the synthesis of polyproteins P1 and P2 respectively. A chimeric coat protein gene derived from the C-terminal part of P2 was constructed and subsequently introduced into a binary transformation vector. Transgenic Nicotiana benthamiana plants expressing the coat protein under the control of the CaMV 35S promoter were engineered by Agrobacterium tumefaciens-mediated transformation. Protection against infection with virions or viral RNA was tested in coat protein-expressing plants. A significant delay of systemic invasion was observed in transgenic plants inoculated with virus compared to control plants. This effect was also observed when plants were inoculated with viral RNA. No coat protein-mediated cross-protection was observed when transgenic plants were infected with arabis mosaic virus (ArMV), a closely related nepovirus also responsible for a court-noué disease.Abbreviations GFLV-F13 grapevine fanleaf virus F13 isolate - ArMV arabis mosaic virus - CP coat protein - MS Murashige and Skoog - NPTII neomycin phosphotransferase II - CaMV cauliflower mosaic virus - ELISA enzyme linked immunosorbent assay - VPg genome linked viral protein - TMV tobacco mosaic virus - PVX potato virus X - PVY potato virus Y - TRV tobacco rattle virus - +CP CP expressing - -CP control plant, not expressing CP - CPMP coat protein-mediated protection - CPMCP coat crotein-mediated cross protection  相似文献   

19.
Summary A protocol was developed for the preparation of Cucumis sativus var Straight 8 protoplasts that incorporates a two-step Ficoll® gradient and results in a high percentage of viable, debris-free protoplasts suitable for the transient expression of foreign genes. Polyethylene glycol and electroporation were compared for their effect on protoplast transfection with commonly used reporter genes. Using a polyethylene glycol method, cucumber protoplasts transfected with a plasmid containing the -glucuronidase gene showed high expression levels, while protoplasts transfected with a plasmid containing the chloramphenicol acetyl transferase gene showed levels of activity that were barely distinguishable from mock-transfected controls. Tomato ringspot virus genomic RNA was also transfected into the protoplasts, and the assembly of viral particles was confirmed.  相似文献   

20.
    
Summary Cloning of genes by transformation with genomic banks and rescue of a phenotype has been extensively used in bacterial systems. This approach has not been possible in plant systems because of the large genome sizes and poor transformation frequencies of most plant species. Recent advances in plant transformation permit the generation of large numbers of transformants in petunia. We have used this system to rescue a model gene encoding resistance to kanamycin by shotgun cloning. The gene encoding neomycin phosphotransferase (NPTII) was introduced into the genome of Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation. A genomic bank of DNA from this tissue was constructed in a cosmid vector containing features which would allow its use in plant transformation. The unselected genomic bank was mobilized from Escherichia coli to A. tumefaciens and used to retransform petunia leaf discs. The rescued gene was identified by its ability to confer a kanamycin-resistant phenotype in petunia tissue. The presence of the NPTII gene was confirmed by nopaline assay and Southern blot analysis. This experiment demonstrates the feasibility of gene rescue, in certain circumstances, in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号