首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The following experiments were designed in order to examine the inter-relationships of various prostaglandins (PG's) and the adrenergic nervous system, in conjunction with blood pressure and heart rate responses, in vivo. Stimulation of the entire spinal cord (50v, 0.3–3 Hz, 1.0 msec) of the pithed rat increased blood pressure, heart rate and plasma epinephrine (EPI) and norepinephrine (NE) concentration (radioenzymatic-thin layer chromatographic assay). Infusion of PGE2(10–30 μg/kg. min, i.v.) suppressed blood pressure and heart rate responses to spinal cord stimulation while plasma EPI (but not NE) was augmented over levels found in control animals. PGI2 (0.03–3.0 μg/kg. min, i.v.) suppressed the blood pressure response to spinal cord stimulation without any effect on heart rate or the plasma catecholamine levels. PGE2 and PGF2α(10–30 μg/kg. min, i.v.) did not change the blood pressure, heart rate or plasma EPI and NE responses to the spinal cord stimulation although PGF2α disclosed an overall vasopressor effect during the pre-stimulation period. At the pre-stimulation period it was also observed that PGE2, PGF2α and PGI2, had a positive chronotropic effect on the heart rate, the cardiac accelerating effect of PGE2 was not abolished by propanolol. These in vivo studies suggest that in the rat, PGE2 and PGI2 modulate sympathetic responses, primarily by interaction with the post-synaptic elements — PGE2 on both blood vessels and the heart and PGI2 by acting principally on blood vessels.  相似文献   

2.
Vasopressinergic pathways within the spinal cord have been implicated in the control of cardiovascular function. This study was undertaken to determine the mechanisms whereby intrathecally administered arginine vasopressin (AVP) increases blood pressure and heart rate in anesthetized rats. The cardiovascular responses to intrathecal AVP administration were significantly attenuated after intravenous administration of the ganglionic blocking agent, chlorisondamine chloride, as were the pressor responses following alpha-adrenergic receptor blockade with phentolamine and the heart rate responses following beta-receptor blockade with propranolol. Intrathecal administration of the V1 vasopressin receptor antagonist d(CH2)5Tyr(Me)AVP completely blocked the cardiovascular responses to intrathecal AVP injections, but did not significantly alter the responses to intrathecal substance P injections. There was no evidence for the involvement of the renin-angiotensin system in the pressor responses to intrathecal AVP, as (i) an angiotensin II receptor blocking agent, [Sar1, Val5, Ala8]angiotensin, failed to significantly alter the responses to intrathecal AVP, and (ii) plasma renin levels did not change following administration of the peptide. Intrathecal injections of [3H]AVP suggest that only small amounts of the peptide may cross into the plasma during the time in which the cardiovascular variables are changing. These data provide evidence that intrathecally administered AVP discretely activates the sympathetic outflow to the heart and vasculature, and confirm the neurally mediated nature of the response.  相似文献   

3.
Hamsters of the BIO 14.6 strain characteristically develop cardiomyopathy as they age, and hamsters of this strain have overt signs of heart failure by 11 months of age. Plasma levels of the posterior pituitary hormone arginine-vasopressin (AVP) were found to be elevated (approximately 2-fold) in 11 month old BIO 14.6 hamsters, compared to age-matched hamsters of a control strain. AVP appeared inappropriately elevated in these animals, since they were neither hyperosmotic nor markedly hypotensive. The elevated levels of AVP observed in these animals appears to contribute to vasomotor tone, since intravenous adminstration of a specific antagonist of the vasoconstrictor action of AVP [d(CH2)5Ome(TYR)AVP] elicited a fall in arterial pressure (9±2 mm Hg, n=6, p<0.05). The AVP antagonist had no effect on arterial pressure in hamsters of a control strain, and vehicle administration had no effect on arterial pressure in either strain. These data indicate that inappropriately elevated levels of AVP contribute to the cardiovascular state of myopathic hamsters. Since elevated plasma AVP has been noted in human congestive heart failure, these results suggest that AVP may contribute to the cardiovascular status during congestive heart failure.  相似文献   

4.
The effect of CL 115,347, a topically active antihypertensive PGE2 analog, and PGE2 on changes in blood pressure (BP), heart rate (HR) response and plasma epinephrine (E) and norepinephrine (NE) levels induced by stimulation of the sympathetic spinal cord outflow were studied in pithed stroke-prone spontaneously hypertensive rats (SHRSP). Surgical pithing significantly reduced plasma E but not NE levels suggesting that the sympathoadrenal medullary system differentially affects E and NE release. Sympathetic stimulation of the spinal cord of pithed SHRSP increased HR, BP, plasma E and NE levels. Topically applied CL 115,347 (0.001–0.1 mg/kg) dose-dependently decreased BP, while intravenously infused PGE2 (30 μg/kg/min) did not alter BP except for a brief initial drop. Topical application of CL 115,347 (0.1 mg/kg) also inhibited BP responses to sympathetic stimulation without effects on HR or plasma E or NE levels. Intravenous infusion of PGE2 (30 μg/kg/min) inhibited both BP and HR responses to spinal cord stimulation but did not alter plasma catecholamine levels. These studies in SHRSP suggest that CL 115,347 and PGE2 modulate cardiovascular responses mainly via postjunctional effects, but act differently on the cardiovascular elements, CL 115,347 acts primarily on blood vessels while PGE2 acts on blood vessels and heart.  相似文献   

5.
Recent evidence has demonstrated that arginine vasopressin (AVP) may modulate primary afferent activity of nociceptors in the dorsal horn of the spinal cord. Because nociceptors are group III and IV afferents, spinal AVP also may modulate the activity of group III and IV afferents that cause reflex cardiovascular responses to muscle contraction. Thus, we compared the pressor (mean arterial pressure), myocardial contractile (dP/dt), and heart rate (HR) responses to electrically induced static contraction of the cat hindlimb before and after lumbar intrathecal (IT) injection (L1-L7) of AVP (n = 9), the V1 receptor antagonist d(CH2)5Tyr(Me)AVP (n = 6), the V2 receptor antagonist d(CH2)5[D-Ile2,Ile4,Ala-NH2(9)]AVP (n = 6), and the V2 agonist [Val4,D]AVP (n = 8). After IT injection of AVP (0.1 or 1 nmol) the pressor and contractile responses to static contraction were attenuated by 55 and 44%, respectively. HR was unchanged. Forty-five to 60 min after AVP injection, the contraction-induced pressor and contractile responses were restored to control levels. V1 receptor blockade augmented contraction-induced increases in mean arterial pressure (36%) and dP/dt (49%) but not HR. V2 receptor blockade had no effect on the cardiovascular response to contraction, whereas selective V2 stimulation attenuated the dP/dt (-20%) and HR (-33%) responses but not the pressor response. These results suggest that AVP attenuates the reflex cardiovascular response to contraction by modulating sensory nerve transmission from contracting muscle primarily via a V1 receptor mechanism in the lumbar spinal cord.  相似文献   

6.
Arginine vasopressin (AVP) containing neurones and pathways have been localized in various cardiovascular control centers of the central nervous system in rats. AVP influences cardiovascular regulation when injected into various areas of the central nervous system. The blood pressure increases in response to central AVP injections were shown to be initiated by stimulation of central V1-AVP receptors and mediated by stimulation of sympathetic outflow to the periphery. On the other hand, AVP has also been shown to attenuate the pressor responses to electrical stimulation of the mesencephalic reticular formation when injected into the brain ventricular system. In addition, AVP can participate in cardiovascular regulation by modulating baroreceptor reflex sensitivity. We have shown that in rats peripheral (hormonal) AVP can sensitize the heart rate component of the baroreceptor reflex by acting on V2-AVP receptors accessible from the blood, while at the same time central (neuronal) AVP can attenuate the baroreceptor reflex through brain V1-AVP receptors that cannot be reached from the blood. Binding and functional studies favour the existence of V1-AVP receptors in the central nervous system, whereas evidence for central V2-AVP receptors is still scarce. The role of AVP in hypertension remains controversial, but recent evidence suggests that a discordance between the various central and peripheral cardiovascular actions of AVP, rather than its hormonal vasopressor effects, may contribute to the pathogenesis of hypertension.  相似文献   

7.
电刺激兔肾脏传入神经对血压,心率及加压素释放的影响   总被引:1,自引:0,他引:1  
吕敏  魏顺光 《生理学报》1995,47(5):471-477
本工作以兔为实验对象,观察电刺激肾脏传入神经(ARN)对血压、心率、颈交感神经放电、以及加压素(AVP)合成和释放的影响,并对ARN进入中枢的通路作了观察。结果显示,电刺激ARN可以引起血压下降、心率减慢、颈交感神经放电抑制等反应,ARN的兴奋还可使下丘脑的视上核、室旁核中的AVP含量增加,垂体中AVP含量下降,血浆AVP水平升高。硝普钠的降压实验和静脉注射AVP受体阻断剂AVPa的实验均证实了A  相似文献   

8.
Arginine vasopressin (AVP), a nonapeptide hormone of posterior pituitary, reaches the central nervous system from systemic blood circulation with a difficulty because of the blood–brain barrier (BBB). The interest has been expressed in the use of the nasal route for delivery of AVP to the brain directly, exploiting the olfactory pathway. Our previous study has demonstrated that AVP in the brain rather than the spinal cord and blood circulation plays an important role in rat pain modulation. For understanding the role of AVP on pain modulation in human, the communication tried to investigate the effect of intranasal AVP on human headache. The results showed that (1) AVP concentration in both plasma and cerebrospinal fluid (CSF) increased significantly in headache patients, who related with the headache level; (2) there was a positive relationship between plasma and CSF AVP concentration in headache patients; and (3) intranasal AVP could relieve the human headache in a dose-dependent manner. The data suggested that intranasal AVP, which was delivered to the brain through olfactory region, could treat human headache and AVP might be a potential drug of pain relief by intranasal administration.  相似文献   

9.
Summary The effects of intracerebroventricular (icv) injections of angiotensin II (ANG II) on water intake, blood pressure, heart rate, and plasma arginine-vasopressin (AVP) concentration were studied in chronically instrumented adult male Syrian golden hamsters (Mesocricetus auratus). Furthermore, the effects of pharmacological ganglionic blockade, and of vascular AVP receptor blockade, on central ANG II-induced cardiovascular responses were investigated. ANG II (1, 10, and 100 ng, icv) elicited dose-dependent increases in water intake and arterial blood pressure. Heart rate showed a biphasic response with a short initial non dose-dependent tachycardic and a subsequent longer lasting bradycardic phase. Plasma AVP concentration was increased two and a half fold with 100 ng ANG II icv. Both ganglionic blockade and vascular AVP receptor blockade significantly attenuated the central ANG II-induced pressor response. The tachycardic phase of the heart rate response was abolished by ganglionic blockade and the bradycardic phase was significantly diminished by AVP receptor blockade. The results support the hypothesis that brain ANG II may participate in the central control of body fluid volume and in central cardiovascular regulation in conscious hamsters.  相似文献   

10.
The kinetic constants for 4-aminobutyrate: 2-oxoglutarate aminotransferase (GABA-trans-aminase) and succinate-semialdehyde: NAD+ oxidoreductase (SSA-DH) have been determined using rat brain homogenate. The Michaelis constants for GABA-T at saturated substrate concentrations were calculated to be Kgaba= 1.5 mM, K2-OG= 0.25 mM, KGLU= 620 μM, and KSSA= 87 μm. The Vmax for the reaction using GABA and 2-oxoglutarate (2-OG) as substrates (forward reaction) was found to be 35.2 μmol/ These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/gh and 167 pmol/g These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g/h in the brain and spinal cord respectively were calculated. The kinetics of GABA-T have been shown to be consistent with a Ping Pong Bi Bi mechanism. Substrate inhibition of the forward reaction, through formation of a dead-end complex, was found to occur with 2-OG (Ki 3.3 mM), whereas GABA was found to be a product inhibitor of the reverse reaction (Ki= 0.6 mM). Using the appropriate Haldane relationship, a Keq of 0.04 for GGBA-T was found, indicating that the reaction was strongly biased towards GABA. For SSA-DH, the Km of SSA was determined (9.1 μM) and the Vmax was 27.5 μmol/ These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g/h in the brain and spinal cord respectively were calculated. h. The effect of di-n-propylacetate (DPA) on both GABA-T and SSA-DH was measured. DPA inhibited SSA-DH competitively with respect to SSA, giving a Ki of 0.5 mM. GABA-T was only slightly inhibited. The Ki of DPA for the forward reaction was 23.2 mM with respect to GABA, which was 40-50 times higher than that for SSA-DH. For the reverse reaction the Ki of DPA was found to be nearly the same (15.2 mM with respect to Glu and 22.9 mM with respect to SSA). These results suggest that GABA accumulation in the brain, after administration of DPA in vivo, is caused by SSA-DH inhibition. Two mechanisms are indicated by the data. (1) The higher level of SSA, which results from inhibition of SSA-DH, initiates the reverse reaction of GABA-T, thus increasing the level of GABA via conversion of SSA. (2) The degradation of GABA is inhibited by SSA, since SSA has a strong inhibitory effect on the forward reaction, as calculated from the present data.  相似文献   

11.
The centrally acting antihypertensive drug clonidine has been found to stimulate the synthesis of PGF in the brain. Centrally administered PGF, in turn, induces rises of blood pressure and heart rate. We therefore studied the influence of inhibitors of prostaglandin (PG) synthesis on the cardiovascular effects of clonidine in urethane-anaesthetised rats. Pretreatment with indomethacin or paracetamol (100 μg/rat into the fourth cerebral ventricle) antagonised the central hypotensive effect of clonidine (0.125–16.0 μg/rat into the fourth cerebral ventricle). The bradycardic effect of centrally administered clonidine was, however, enhanced by pretreatment with paracetamol but not influenced by indomethacin pretreatment. Sodium meclofenamate (100 μg/rat into the fourth cerebral ventricle) did not significantly affect the clonidine-induced changes in blood pressure and heart rate.These results suggest that the clonidine-induced hypotension on one hand and bradycardia on the other hand may be mediated by partly different mechanisms. An interference of the formation of PGF with the cardiovascular effects of clonidine cannot be completely excluded since paracetamol pretreatment potentiated the bradycardic effect of clonidine. However, inhibitors of PG synthesis did not enhance but antagonised the hypotensive effect of clonidine. Therefore it is likely that the synthesis of PGF does not interfere with the hypotensive effect of clonidine. Moreover, the antagonism of the hypotensive effect by inhibitors of PG synthesis suggests that some hypotensive metabolite of arachidonic acid in the brain could be involved in the central hypotensive effect of clonidine.  相似文献   

12.
目的:观察双水平气道内正压通气(BiPAP)治疗尿毒症合并左心衰竭患者的临床疗效。方法:选取82例确诊为尿毒症合并左心衰竭的患者,在患者进行常规的强心、利尿、扩血管、持续性肾替代治疗(CRRT)30 min后无缓解后,立即对患者进行BiPAP治疗。比较患者在常规治疗30 min末、BiPAP治疗后1 h、2 h后收缩压、舒张压、心率、呼吸频率、二氧化碳分压(PaCO_2)、动脉血氧分压(PaO_2)等指标的变化,以及常规治疗30 min末、BiPAP治疗2h后的血浆脑钠肽(BNP)、血乳酸(Lac)水平和临床表现的变化。结果:经Bi PAP治疗后患者症状和体征缓解的有效率为93.90%。BiPAP治疗1 h、2 h后与常规治疗30 min末比较,患者的收缩压、舒张压、心率、呼吸频率具有显著下降(P0.05),PaO_2则显著升高(P0.05),PaCO_2的变化经比较则无显著的统计学意义(P0.05)。BiPAP治疗2 h后患者的血浆BNP、Lac水平与常规治疗30 min末比较均显著下降(P0.05)。结论:BiPAP治疗尿毒症并发急性左心衰竭患者可有效改善患者的症状和体征,改善心功能,适合在临床上推广应用。  相似文献   

13.
Like humans, the heart rate (HR) of anesthetized rats immersed in CO2-water is lower than that when immersed in tap water at the same temperature. To investigate the afferent signal pathway in the mechanism of HR reduction, Wistar rats were anesthetized with urethane and then the spinal cord was transected between T4 and T5. The animals were immersed up to the axilla in a bathtub of tap-water (CO2 contents: 10–20 mg·l−1) or of CO2-water (965–1,400 mg·l−1) at 35°C while recording HR, arterial blood pressure, and arterial blood gas parameters (PaCO2, PaO2, pH). Arterial blood gas parameters did not change during immersion, irrespective of CO2 concentration of the bath water, whereas the HR was reduced in the CO2-water bath. The inhalation of CO2-mixed gas (5 % CO2, 20 % O2, 75 % N2) resulted in increased levels of blood gases and an increased HR during immersion in all types of water tested. The HR reduction observed in sham transected control animals immersed in CO2-water disappeared after subsequent spinal cord transection. These results show that the dominant afferent signal pathway to the brain, which is involved in inducing the reduced HR during immersion in CO2-water, is located in the neuronal route and not in the bloodstream.  相似文献   

14.
It is still unclear whether the low-frequency oscillation in heart rate is generated by an endogenous neural oscillator or by a baroreflex resonance. Our aim was to investigate this issue by analyzing blood pressure and heart rate variability and the baroreflex function in paraplegic subjects with spinal cord injury below the fourth thoracic vertebra. These subjects were selected because they represent a model of intact central neural drive to the heart, with a partially impaired autonomic control of the vessels. In our study, arterial blood pressure and ECG were recorded in 33 able-bodied controls and in 33 subjects with spinal cord lesions between the fifth thoracic and the fourth lumbar vertebra 1) during supine rest (lowest sympathetic activation), 2) sitting on a wheelchair (light sympathetic activation), and 3) during exercise (moderate sympathetic activation). Blood pressure and heart rate spectra, coherence, and baroreflex function (sequence technique) were estimated in each condition. Compared with controls, paraplegic subjects showed a reduction of the low-frequency power of blood pressure and heart rate, and, unlike controls, a 0.1-Hz peak did not appear in their spectra. Sympathetic activation increased the 0.1-Hz peak of blood pressure and heart rate and the coherence at 0.1 Hz in controls only. Paraplegic subjects also had significantly lower baroreflex effectiveness and greater blood pressure variability. In conclusion, the disappearance of the 10-s oscillation of heart rate and blood pressure in subjects with spinal cord lesion supports the hypothesis of the baroreflex nature of this phenomenon.  相似文献   

15.
Arterial blood pressure was monitored in voluntarily diving tufted ducks. Mean arterial blood pressure while diving increased during the pre-dive tachycardia, fell to resting levels on submersion, then gradually increased before peaking on surfacing. Estimated total peripheral resistance fell during the pre-dive and post-dive tachycardia, presumably to allow the oxygen stores to be loaded and replenished respectively and/or for carbon dioxide levels to be reduced. Changes in mean arterial blood pressure and total peripheral resistance suggest that peripheral vasoconstriction occurs in some vascular beds during a dive. An increase in arterial blood pressure (and therefore perfusion pressure) may be employed to increase blood flow and oxygen delivery to the active leg muscles.Abbreviations ecg Electrocardiogram, f H, heart rate - MABP mean arterial blood pressure - P b blood pressure(s) - TPR total peripheral resistance - V b cardiac output  相似文献   

16.
Gestation in the human and in rats is accompanied by a decrease in blood pressure and a reduction of the pressor response to vasoconstrictor agents. In humans, the decreased vascular reactivity to angiotensin II (AII) may occur simultaneously with a state of increased baroreceptor sensitivity. We have consequently evaluated the heart rate response to elevation of blood pressure following administration of either AII or arginine8-vasopressin (AVP) in conscious unrestrained, nonpregnant, or term-pregnant normotensive rats (Sprague-Dawley, SDR; Wistar-Kyoto, WKR) and in spontaneously hypertensive rats (SHR). The decrease in heart rate in response to increase in blood pressure by AII in nonpregnant animals was similar in SDR and SHR, but much greater in WKR. The heart rate response to increase in blood pressure by AVP was similar in all three strains of cycling rats. Gestation (20th day) did not change the heart rate response to increase in blood pressure by AII in normotensive animals, but increased slightly the reflex responses in SHR, as shown by a significant increase of the slope of the relationship of the decrement in heart rate versus the increment of blood pressure. The heart rate response to increase in blood pressure by AVP was greater during gestation in normotensive SDR and WKR, but not in SHR. These results show that the heart rate responses to an increase in blood pressure by vasoconstrictor peptides is dependent on the strain of animals used and suggest that the baroreceptor reflexes play a minor role in the blunted effect of vasconstrictor agens at the end of gestation in normotensive and spontaneously hypertensive rats.  相似文献   

17.
Increased production of free radicals and impairment of mitochondrial function are important factors in the pathogenesis of hypertension. This study examined the impact of hypertension on mitochondrial respiratory chain function, coenzyme Q9 (CoQ9), coenzyme Q10 (CoQ10), and α-tocopherol content in brain mitochondria, and the effect of blockade of angiotensin II type 1 receptors (AT1R) in the prehypertensive period on these parameters. In addition, blood pressure, heart and brain weight to body weight ratios, and the geometry of the basilar artery supplying the brain were evaluated. In the 9th week blood pressure and heart weight/body weight ratio were significantly increased and brain weight/body weight ratio was significantly decreased in spontaneously hypertensive rats (SHR) when compared to Wistar rats (WR). The cross-sectional area of the basilar artery was increased in SHR. Glutamate-supported respiration, the rate of ATP production, and concentrations of CoQ9, CoQ10, and α-tocopherol were decreased in SHR. The succinate-supported function and cytochrome oxidase activity were not changed. The treatment of SHR with losartan (20 mg/kg/day) from 4th to 9th week of age exerted preventive effect against hypertension, heart and arterial wall hypertrophy, and brain weight/body weight decline. After the therapy, the rate of ATP production and the concentration of CoQ increased in comparison to untreated SHR. The impairment of energy production and decreased level of lipid-soluble antioxidants in brain mitochondria as well as structural alterations in the basilar artery may contribute to increased vulnerability of brain tissue in hypertension. Long-term treatment with AT1R blockers may prevent brain dysfunction in hypertension.  相似文献   

18.
The in vivo utilization ofd-3-hydroxy[3-14C]butyrate for oxidation in the whole animal and for lipid and amino acid synthesis in brain and spinal cord of overnight-fasted 15-day-old chicks has been measured. Appreciable amounts of injected 3-hydroxy[3-14C]butyrate were expired as14CO2 one hour after injection, the total amount of which increased with increasing dosages. Lipid synthesis was high in both brain and spinal cord. Free, cholesterol and phospholipids were the main lipids labeled in both, tissues, increasing with time after injection up to 120 min. The incorporation of radioactivity into triglycerides, esterified cholesterol and free fatty acids was not time-dependent. Increased concentrations of 3-hydroxybutyrate gave rise to higher synthetic rates both in brain and spinal cord The rate of amino acid synthesis was slightly higher in brain than in spinal cord. Glutamate was always the major amino acid formed.  相似文献   

19.
It has been estimated that cerebrospinal fluid (CS F) contains approximately 80 proteins that significantly increase or decrease in response to various clinical conditions. Here we have evaluated the CS F protein PrPC (cellular prion protein) for possible increases or decreases following spinal cord injury. The physiological function of PrPC is not yet completely understood; however, recent findings suggest that PrPC may have neuroprotective properties. Our results show that CS F PrPC is decreased in spinal cord injured patients 12 h following injury and is absent at 7 days. Given that normal PrPC has been proposed to be neuroprotective, we speculate that the decrease in CS F PrPC levels may influence neuronal cell survival following spinal cord injury.Key words: CSF, PrPC, Hsp25, crystallin domain, spinal cord injury  相似文献   

20.
In order to obtain further evidence of putative neurotransmitters in primary sensory neurons and interneurons in the dorsal spinal cord, we have studied the effects of unilateral section of dorsal roots and unilateral occlusion of the dorsal spinal artery on cholinergic enzyme activity and on selected amino acid levels in the spinal cord. One week after sectioning dorsal roots from caudal cervical (C7) to cranial thoracic (T2) levels, the specific activity of choline acetyltransferase (ChAT) was significantly decreased and acetylcholinesterase (AChE) showed a tendency to decrease in the dorsal quadrant on the operated side of the spinal cord. Dorsal root sectioning had little effect on the levels of free glutamic acid or other amino acids in the dorsal spinal cord. These results suggest that primary sensory neurons may include some cholinergic axons, and that levels of putative amino acid transmitters are not regulated by materials supplied by axonal transport from the dorsal root ganglia. By contrast, one week following unilateral occlusion of the dorsal spinal artery, the activities of ChAT and AChE were unchanged in the operated quadrant of the spinal cord, while decreases of Asp, Glu, and GABA, and an increase in Tau were detected. These findings are consistent with the proposals that such amino acids, but not ACh, may function as neurotransmitter candidates in interneurons of the dorsal spinal cord.Abbreviation used ACh acetylcholine - AChE acetylcholinesterase - Asp aspartic acid - ChAT choline acetyltransferase - GABA -aminobutyric acid - Glu glutamic acid - Gly glycine - SP substance P - Tau taurine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号