首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Primary structure of the goat beta-globin locus control region   总被引:6,自引:0,他引:6  
The goat beta-globin cluster is composed of a triplicated four-gene set. A locus control region (LCR) containing elements homologous to 5'DNase I hypersensitive sites (HS) 1, 2, and 3 of the human beta-globin LCR has been identified at the 5' end of this locus. We determined 10.2 kb of nucleotide sequence from the goat beta-globin locus control region. Self-comparison of this sequence by dot matrix analysis revealed the presence of six complete and three incomplete artiodactyl repeats. A novel repeated element, termed D repeat, was also identified. Southern blotting analysis demonstrated that these elements exist in the goat genome as a low to medium frequency interspersed repeat family. The absence of any other large region of self-homology (direct or inverted) in the goat LCR suggests that 5'HSs 1, 2, and 3 did not arise through duplication, but rather evolved independently. By comparing goat 5'HS 1 to those of human, rabbit, and mouse, we show a greater than 80% conservation in sequence between the four species. This level of evolutionary conservation suggests that 5'HS 1 plays an important role in the regulation of beta-globin loci.  相似文献   

2.
DNA replication in the human beta-globin locus is subject to long-distance regulation. In murine and human erythroid cells, the human locus replicates in early S phase from a bidirectional origin located near the beta-globin gene. This Hispanic thalassemia deletion removes regulatory sequences located over 52 kb from the origin, resulting in replication of the locus from a different origin, a shift in replication timing to late S phase, adoption of a closed chromatin conformation, and silencing of globin gene expression in murine erythroid cells. The sequences deleted include nuclease-hypersensitive sites 2 to 5 (5'HS2-5) of the locus control region (LCR) plus an additional 27-kb upstream region. We tested a targeted deletion of 5'HS2-5 in the normal chromosomal context of the human beta-globin locus to determine the role of these elements in replication origin choice and replication timing. We demonstrate that the 5'HS2-5-deleted locus initiates replication at the appropriate origin and with normal timing in murine erythroid cells, and therefore we conclude that 5'HS2-5 in the classically defined LCR do not control replication in the human beta-globin locus. Recent studies also show that targeted deletion of 5'HS2-5 results in a locus that lacks globin gene expression yet retains an open chromatin conformation. Thus, the replication timing of the locus is closely correlated with nuclease sensitivity but not globin gene expression.  相似文献   

3.
Single-copy human beta-globin transgenes are very susceptible to suppression by position effects of surrounding closed chromatin. However, these position effects are overcome by a 20 kbp DNA fragment containing the locus control region (LCR). Here we show that the 6.5 kbp microlocus LCR cassette reproducibly directs full expression from independent single-copy beta-globin transgenes. By testing individual DNase I-hypersensitive sites (HS) present in the microlocus cassette, we demonstrate that the 1.5 kbp 5'HS2 enhancer fragment does not direct beta-globin expression from single-copy transgenes. In contrast, the 1.9 kbp 5'HS3 fragment directs beta-globin expression in five independent single-copy transgenic mouse lines. Moreover, the 5'HS3 core element and beta-globin proximal promoter sequences are DNase I hypersensitive in fetal liver nuclei of these expressing transgenic lines. Taken together, these results demonstrate that LCR activity is the culmination of at least two separable functions including: (i) a novel activity located in 5'HS3 that dominantly opens and remodels chromatin structure; and (ii) a recessive enhancer activity residing in 5'HS2. We postulate that the different elements of the LCR form a 'holocomplex' that interacts with the individual globin genes.  相似文献   

4.
Deletion of the 234-bp core element of the DNase I hypersensitive site 3 (5'HS3) of the locus control region (LCR) in the context of a human beta-globin locus yeast artificial chromosome (beta-YAC) results in profound effects on globin gene expression in transgenic mice. In contrast, deletion of a 2.3-kb 5'HS3 region, which includes the 234-bp core sequence, has a much milder phenotype. Here we report the effects of these deletions on chromatin structure in the beta-globin locus of adult erythroblasts. The 234-bp 5'HS3 deletion abolished histone acetylation throughout the beta-globin locus; recruitment of RNA polymerase II (pol II) to the LCR and beta-globin gene promoter was reduced to a basal level; and formation of all the 5' DNase I hypersensitive sites of the LCR was disrupted. The 2.3-kb 5'HS3 deletion mildly reduced the level of histone acetylation but did not change the profile across the whole locus; the 5' DNase I hypersensitive sites of the LCR were formed, but to a lesser extent; and recruitment of pol II was reduced, but only marginally. These data support the hypothesis that the LCR forms a specific chromatin structure and acts as a single entity. Based on these results we elaborate on a model of LCR chromatin architecture which accommodates the distinct phenotypes of the 5'HS3 and HS3 core deletions.  相似文献   

5.
6.
To assess the contribution of DNase I-hypersensitive site 4 (HS4) of the beta-globin locus control region (LCR) to overall LCR function we deleted a 280 bp fragment encompassing the core element of 5'HS4 from a 248 kb beta-globin locus yeast artificial chromosome (beta-YAC) and analyzed globin gene expression during development in beta-YAC transgenic mice. Four transgenic lines were established; each contained at least one intact copy of the beta-globin locus. The deletion of the 5'HS4 core element had no effect on globin gene expression during embryonic erythropoiesis. In contrast, deletion of the 5'HS4 core resulted in a significant decrease of gamma and beta-globin gene expression during definitive erythropoiesis in the fetal liver and a decrease of beta-globin gene expression in adult blood. We conclude that the core element of 5'HS4 is required for globin gene expression only in definitive erythropoiesis. Absence of the core element of HS4 may limit the ability of the LCR to provide an open chromatin domain and/or enhance gamma and beta-globin gene expression in the adult erythroid cells.  相似文献   

7.
Effective gene therapy constructs based on retrovirus or adeno-associated virus vectors will require regulatory elements that direct expression of genes transduced at single copy. Most beta-globin constructs designed for therapy of beta-thalassemias are regulated by the 5'HS2 component of the locus control region (LCR). Here we show that a human beta-globin gene flanked by two small 5'HS2 core elements or flanked by a 5'HS3 (footprints 1-3) core and a 5'HS2 core are not reproducibly expressed in single copy transgenic mice. In addition, low copy transgene concatamers that contain only dimer 5'HS2 cores fail to express, whereas those that contain monomer 5'HS2 cores express at 14% per copy. These data suggest that spacing between HS cores is crucial for LCR activity. We therefore constructed a novel 3.0 kb LCR cassette in which the 5'HS2, 5'HS3 and 5'HS4 cores are each separated by approximately 700 bp. When linked to the 815 bp beta-globin promoter this LCR directs 45% levels of expression from four independent single copy transgenes. However, the 3.0 kb LCR linked to the 265 bp promoter expresses variable levels, averaging 18%, from three single copy transgenes. Our findings suggest that sequences in the distal promoter play a role in single copy transgene activation and that larger LCR and promoter elements are most suitable for gene therapy applications.  相似文献   

8.
9.
To examine the function of murine beta-globin locus region (LCR) 5' hypersensitive site 3 (HS3) in its native chromosomal context, we deleted this site from the mouse germ line by using homologous recombination techniques. Previous experiments with human 5' HS3 in transgenic models suggested that this site independently contains at least 50% of total LCR activity and that it interacts preferentially with the human gamma-globin genes in embryonic erythroid cells. However, in this study, we demonstrate that deletion of murine 5' HS3 reduces expression of the linked embryonic epsilon y- and beta H 1-globin genes only minimally in yolk sac-derived erythroid cells and reduces output of the linked adult beta (beta major plus beta minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-neo cassette was left within the HS3 region of the LCR, a much more severe phenotype was observed at all developmental stages, suggesting that PGK-neo interferes with LCR activity when it is retained within the LCR. Collectively, these results suggest that murine 5' HS3 is not required for globin gene switching; importantly, however, it is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult erythrocytes.  相似文献   

10.
The beta-globin locus control region (LCR) is a cis regulatory element that is located in the 5' part of the locus and confers high-level erythroid lineage-specific and position-independent expression of the globin genes. The LCR is composed of five DNase I hypersensitive sites (HSs), four of which are formed in erythroid cells. The function of the 5'-most site, HS5, remains unknown. To gain insights into its function, mouse HS5 was cloned and sequenced. Comparison of the HS5 sequences of mouse, human, and galago revealed two extensively conserved regions, designated HS5A and HS5B. DNase I hypersensitivity mapping revealed that two hypersensitive sites are located within the HS5A region (designated HS5A(major) and HS5A(minor)), and two are located within the HS5B region (HS5B(major), HS5B(minor)). The positions of each of these HSs colocalize with either GATA-1 or Ap1/NF-E2 motifs, suggesting that these protein binding sites are implicated in the formation of HS5. Gel retardation assays indicated that the Ap1/NF-E2 motifs identified in murine HS5A and HS5B interact with NF-E2 or similar proteins. Studies of primary murine cells showed that HS5 is formed in all hemopoietic tissues tested (fetal liver, adult thymus, and spleen), indicating that this HS is not erythroid lineage specific. HS5 was detected in murine brain but not in murine kidney or adult liver, suggesting that this site is not ubiquitous. The presence of GATA-1 and NF-E2 motifs (which are common features of the DNase I hypersensitive sites of the LCR) suggests that the HS5 is organized in a manner similar to that of the other HSs. Taken together, our results suggest that HS5 is an inherent component of the beta-globin locus control region.  相似文献   

11.
12.
13.
14.
The human beta-globin Locus Control Region (LCR) has two important activities. First, the LCR opens a 200 kb chromosomal domain containing the human epsilon-, gamma- and beta-globin genes and, secondly, these sequences function as a powerful enhancer of epsilon-, gamma- and beta-globin gene expression. Erythroid-specific, DNase I hypersensitive sites (HS) mark sequences that are critical for LCR activity. Previous experiments demonstrated that a 1.9 kb fragment containing the 5' HS 2 site confers position-independent expression in transgenic mice and enhances human beta-globin gene expression 100-fold. Further analysis of this region demonstrates that multiple sequences are required for maximal enhancer activity; deletion of SP1, NF-E2, GATA-1 or USF binding sites significantly decrease beta-globin gene expression. In contrast, no single site is required for position-independent transgene expression; all mice with site-specific mutations in 5' HS 2 express human beta-globin mRNA regardless of the site of transgene integration. Apparently, multiple combinations of protein binding sites in 5' HS 2 are sufficient to prevent chromosomal position effects that inhibit transgene expression.  相似文献   

15.
We previously identified the murine homologue of the human beta-globin Locus Control Region (LCR) 5' HS-2. The lambda clone containing murine 5' HS-2 extends approximately 12 kb upstream from this site; here, we report the sequence of this entire upstream region. The murine homologue of 5' HS-3 is located approximately 16.0 kb upstream from the mouse epsilon y-globin gene, but no region homologous to human 5' HS-4 was present in our clone. Using a reporter system consisting of a human gamma-globin promoter driving the neomycin phosphotransferase gene (gamma-neo), we tested murine LCR fragments extending from -21 to -9 kb (with respect to the epsilon y-globin gene cap site) for activity in classical enhancer and integration site assays in K562 and MEL cells. 5' HS-2 behaved as a powerful enhancer and increased the number of productive integration events (as measured by a colony assay) in both K562 and MEL cells. 5' HS-3 had no activity in K562 cells or in transiently transfected MEL cells, but was nearly as active as 5' HS-2 in the MEL cell colony assay. Two additional tests confirmed the identification of murine 5' HS-3: first, a DNA fragment containing 5' HS-3 confers copy number-dependent, integration-site independent inducibility on a linked beta-globin gene in the MEL cell environment. Secondly, a strong DNAseI hypersensitive site maps to the location of the 5' HS-3 functional core in chromatin derived from MEL cells. Collectively, these data suggest that we have identified the murine homologue of human 5' HS-3, and that this site is functional when integrated into the chromatin of MEL cells but not K562 cells. 5' HS-3 may therefore contain information that contributes to the development-specific expression of the beta-like globin genes.  相似文献   

16.
17.
18.
19.
M Walters  C Kim    R Gelinas 《Nucleic acids research》1991,19(19):5385-5393
A portion of the beta-globin Locus Control Region (LCR), which included DNAse I hypersensitive site 4 (HS4), was analyzed for its interactions with nuclear extracts and its contribution to LCR activity in a functional assay. In gel retardation assays, a short fragment from HS4 formed complexes with nuclear extracts from both erythroid and nonerythroid cells, and a core protected sequence 5'GACTGGC3' was revealed by DNAse I protection and methylation interference studies. This sequence resembles the binding sites of CCAAT-family members. Purified CP-2 but not CP-1 was shown to bind this HS4 sequence in a gel shift reaction, suggesting that the HS4 binding activity shares some sequence specificity with the CCAAT-factor family. Utilizing a transient expression assay in murine erythroleukemia cells, steady-state RNA levels were measured from pairs of LCR constructs linked to distinguishable beta-globin reporter genes. A short DNA fragment from HS4 which included the binding site for this novel binding activity accounted for most of the contribution to high level expression made by the entire HS4 region.  相似文献   

20.
J Ellis  D Talbot  N Dillon    F Grosveld 《The EMBO journal》1993,12(1):127-134
Transgenes linked to the beta-globin locus control region (LCR) are transcribed in a copy-dependent manner that is independent of the integration site. It has previously been shown that the LCR 5'HS2 region does not require its NF-E2 dimer binding site for LCR activity. In this paper we analyse synthetic 5'HS2 core constructs containing point mutations in the other factor binding sites 3' of the NF-E2 dimer site. The results show that 5'HS2 core is a partially active LCR that functions in a concatamer of at least two copies but not when present as a single copy in transgenic mice and that no single binding site within 5'HS2 is required for position-independent expression. In addition, the H-BP factor is identical to upstream stimulatory factor (USF) and full enhancement levels by 5'HS2 core in MEL cells require a combination of all the factor binding sites. We suggest that 5'HS2 cores in a concatamer interact with each other to establish an area of open chromatin and that this process may be the basis of LCR function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号