首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high level of arachidonic acid release from [2-14C]arachidonylphosphatidylinositol (PI) was observed at neutral pH (6.0-7.0) in the presence of purified plasma membranes of guinea pig peritoneal macrophages. This activity was at least 10-fold higher than that with arachidonylphosphatidylcholine (PC) or phosphatidylethanolamine (PE) as substrate. The accumulation of [14C]diacylglycerol and [14C]phosphatidic acid was not detected at any time, and arachidonic acid release from [14C]arachidonyldiacylglycerol was not detectable either. The data suggest that arachidonic acid release from PI may not occur via the phospholipase C pathway. In this paper, we demonstrate the possibility that arachidonic acid release from PI at neutral pH in the macrophage plasma membrane is dependent on the action of phospholipase A2 (EC 3.1.1.4) -like activity. The maximum arachidonic acid release was dependent upon both pH and substrate. Particularly, the activity of arachidonic acid release from PI at neutral pH was very high compared with that from PC or PE. We suggest that phosphatidylinositol phospholipase A2 (EC 3.1.1.52) may play an important role in providing arachidonic acid for subsequent metabolic activity in the macrophages.  相似文献   

2.
1. Macrophages are an important source of the lipid mediators arachidonic acid (AA) and its metabolites that are produced during inflammation. 2. Previously, we reported that insoluble glucans from Streptococcus mutans in dental plaque could induce macrophages to secrete PGE2 and TXB2. 3. Studies were undertaken to identify the phospholipid substrates that can serve as a source of AA in macrophages exposed to the insoluble glucan. 4. When macrophage cell prelabelled with [3H]AA, stimulation with insoluble glucan resulted in a loss of label mainly from phosphatidylcholine (PC) and phosphatidylinositol (PI). 5. In addition, the PC-, and PI-specific phospholipase A2-mediated mechanisms for AA release may be activated in guinea peritoneal macrophages exposed to the insoluble glucan from S. mutans.  相似文献   

3.
Platelet-activating factor (1-0-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) promotes the incorporation of [1-14C]arachidonic acid most significantly into phosphatidylinositol (PI) and phosphatidylcholine (PC) during the early stages of guinea pig neutrophil-PAF interaction. The stimulation reached a maximum at 10(-7) M and started to decline at 10(-6) M. No changes in the mass of each phospholipid were detected in neutrophils challenged by PAF for 1 to 5 minutes. The stimulation by PAF on the formation of [14C]arachidonoyl-PC but not [14C]arachidonoyl-PI was dependent on the presence of external Ca2+. These results suggest that the increased acylation of PI and PC elicited by PAF is secondary to an increased deacylation of these phospholipids and the mechanisms by which PAF stimulates the deacylation of PI and PC may be different.  相似文献   

4.
The objective of the present study was to better understand the remodeling of arachidonic acid (AA) in phospholipids of the mouse bone marrow-derived mast cell (BMMC) during Ag and ionophore A23187 activation. Initial studies were designed to understand the movement of AA in phospholipid classes under resting conditions. BMMC pulse labeled with AA incorporated greater than 95% of the label into the major phospholipid classes. Phosphatidylcholine (PC) subclasses, 1-acyl-2-arachidonoyl-(sn-glycero-3-phosphocholine (GPC)) in particular, initially accounted for most of the label incorporated into the cells with phosphatidylinositol/phosphatidylserine (PI/PS) and phosphatidylethanolamine (PE) subclasses containing much smaller quantities. Prolonged incubation of labeled BMMC resulted in a decrease in the radioactivity in PC with a concomitant increase in PE such that 1-alk-1-enyl-2-arachidonoyl-(sn-glycero-3-phosphoethanolamine (GPE)) became the single largest labeled AA pool by 24 h. Further experiments indicated that 24 h was the time required to reach isotopic equilibrium among AA-containing phospholipids of the BMMC. In the next series of experiments, BMMC phospholipids were labeled to different specific activities by either labeling the cells for 0.5 h or for 24 h followed by stimulation. Under isotopic equilibrium conditions (24 h), stimulation resulted in AA release from PE greater than PC much greater than PI/PS with 1-alk-1-enyl-2-arachidonoyl-GPE providing the bulk of AA released from the BMMC. By contrast, cells labeled for 0.5 h released AA from PC much greater than PI/PS, with 1-acyl-2-arachidonoyl-GPC accounting for most of the AA released from BMMC phospholipids. Label associated with PE subclasses under nonequilibrium conditions remained unchanged or slightly increased throughout a 10-min stimulation period. Finally, BMMC were double labeled with [14C]-AA for 24 h and then with [3H]-AA for 0.5 h. Cell stimulation resulted in a decrease in the [3H]/[14C] ratio in PC and PI and an increase in the ratio in PE. The decrease in [3H]/[14C] ratio in PC was mainly in 1-acyl-2-arachidonoyl-GPC, whereas the increase in PE subclasses was primarily in 1-alk-1-enyl-2-arachidonoyl-GPE. The [3H]/[14C] ratio in cellular neutral lipids and in supernatant fluid products were at values between PC and PE subclasses. Taken together, these data suggest that during Ag activation, the release of free arachidonic acid is from predominantly PE subclasses. Concomitant with the release of AA, there is a rapid remodeling of AA from PC subclasses into PE subclasses (1-alk-1-enyl-2-acyl-GPE).  相似文献   

5.
Glycerophospholipid biosynthesis by the de novo pathway was assessed in mouse peritoneal macrophages by pulse-labeling with [U-14C]glycerol. Phosphatidylcholine (PC), which amounts to about 35% of total cellular phospholipids, exhibited the highest rate of glycerol uptake, followed by phosphatidylinositol (PI) and phosphatidylethanolamine (PE). Remodeling of PC molecular species by deacylation/reacylation was established by determining the redistribution of glycerol label over 2 h after a 1 h pulse of [U-14C]glycerol and by determining incorporation of 18O from H2 18O-containing media. These data suggest that stearic and arachidonic acid enter PC primarily by the remodeling pathway but that small amounts of highly unsaturated molecular species, including 1,2-diarachidonoyl PC, are rapidly synthesized de novo, and subsequently remodeled or degraded. Treatment of the cells with the ionophore A23187 resulted in the selective enhancement of arachidonate turnover in PC, PI and neutral lipid, as well as enhanced de novo PI synthesis. [U-14C]Glycerol labeling experiments suggest that arachidonic acid liberated by Ca2+-dependent phospholipase A2 activity is also reacylated in part through de novo glycerolipid biosynthesis, leading to the formation and remodeling of 1,2-diarachidonoyl PC and other highly polyunsaturated molecular species.  相似文献   

6.
Peritoneal macrophages from endotoxin-tolerant rats have been found to exhibit depressed metabolism of arachidonic acid (AA) to prostaglandins and thromboxane in response to endotoxin. The effect of endotoxin tolerance on AA turnover in peritoneal macrophages was investigated by measuring [14C]AA incorporation and release from membrane phospholipids. Endotoxin tolerance did not affect the amount of [14C]AA incorporated into macrophages (30 min-24 h). However, the temporal incorporation of [14C]AA into individual phospholipid pools (15 min-24 h) was altered. In endotoxin-tolerant macrophages, [14C]AA incorporation into phosphatidylcholine (PC) (2, 4, 24 h) and phosphatidylethanolamine (PE) (8 h) was increased, while the incorporation into phosphatidylserine (PS) (2-24 h) was reduced (P less than 0.005) compared to control macrophages. There was no change in [14C]AA incorporation into phosphatidylinositol (PI). Following 2 or 24 h of incorporation of [14C]AA, macrophages were incubated (3 h) with endotoxin (50 micrograms/ml) or A23187 (1 microM), and [14C]AA release was measured. Endotoxin-tolerant macrophages released decreased (P less than 0.05) amounts of [14C]AA in response to both endotoxin and the calcium ionophore A23187 compared to controls. Control macrophages in response to endotoxin released [14C]AA from PC, PI and PE. In contrast, tolerant cells released [14C]AA only from PC (P less than 0.05). A23187 released [14C]AA from all four pools in the control cells, but only from PC and PE in the tolerant cells. These data demonstrate that endotoxin tolerance alters the uptake and release of AA from specific macrophage phospholipid pools. These results suggest that changes in AA turnover and/or storage are associated with endotoxin tolerance.  相似文献   

7.
The release of arachidonate was stimulated by lipopolysaccharides (LPS) from phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) in a murine macrophage-like cell line, RAW264.7. We measured phospholipase activities in cell-free homogenates of macrophages with 2-arachidonyl PC, PE, and PI as substrates. The activities of two phospholipases A2, catalyzing cleavage of arachidonate preferentially either from PC or PE, were detected. These two phospholipase A2 activities showed different pH optima and Ca2+ requirements; the cleavage of arachidonate from PC showed an optimal pH of 7.0 and was Ca2+-dependent, while that from PE showed an optimal pH of 7.5 but was Ca2+-independent. The cleavage of arachidonate from PI showed a different pH profile and was Ca2+-dependent, and diglyceride (DG) was detected as well as arachidonate, suggesting that both phospholipase C and DG lipase participate in this reaction. We next examined these phospholipase activities in homogenates of macrophages pretreated with LPS. All of the phospholipase activities increased at 0.5 h after LPS treatment, and this level was retained for more than 2 h in 2-arachidonyl PC degradation, continued up to 1 h and then dropped to the control level in 2-arachidonyl PE degradation, and suddenly dropped to the control level after 0.5 h in 2-arachidonyl PI degradation. These results suggest that the cleavage of 2-arachidonate from PC, PE, and PI is essentially catalyzed through different pathways, two phospholipase A2 activities being involved in PC and PE breakdown, and phospholipase C and DG lipase activities in PI breakdown, and that the activities of these substrate-specific phospholipases change in response to LPS treatment in macrophages.  相似文献   

8.
In stimulated neutrophils the production of eicosinoids and the lipid mediator, platelet-activating factor, is thought to be initiated by the activation of a phospholipase A2 which cleaves arachidonic acid from choline-containing glycerophospholipids. Accordingly, studies were undertaken in human neutrophils to characterize phospholipase enzymes that can hydrolyze 1-acyl- and 1-alkyl-linked arachidonoyl-containing phosphatidylcholine (PC). Cellular homogenates were incubated with sonicated dispersions of the arachidonoyl-labeled phospholipid substrates and the hydrolysis of radiolabeled arachidonate was measured. The phospholipase activity was cytosolic, optimal at pH 8.0, and calcium dependent. The homogenization conditions used were important in determining the amount of recoverable enzymatic activity. Vigorous sonication and the presence of calcium during homogenization were strongly inhibitory, whereas the presence of EGTA, heparin and proteinase inhibitors during homogenization increased the activity. Competitive experiments with unlabeled substrates suggested that the phospholipase hydrolyzed arachidonic acid equally well from either 1-acyl- or 1-alkyl-linked PC. However, the phospholipase did show specificity for arachidonic acid, compared to oleic or linoleic acids, at the sn-2 position of 1-acyl-linked PC. When neutrophils were first stimulated with the ionophore A23187, the phospholipase activity against 1-O-hexadecyl-2-[3H]arachidonoylglycerophosphocholine (GPC) increased in a time-dependent fashion up to 3.5-fold over the unstimulated level. The activity against 1-palmitoyl-2-[3H]arachidonoyl-GPC also increased after ionophore stimulation but to a lesser extent. The results demonstrate the presence of a cytosolic, activatable phospholipase that may be involved in PC turnover, arachidonic acid release, and platelet-activating factor production in human neutrophils.  相似文献   

9.
Several studies have shown that dietary n-3 polyunsaturated fatty acids (PUFAs) suppress platelet-activating factor (PAF) generation in leukocytes of humans and rodents, which is associated with the antagonism of arachidonic acid metabolism. Dietary eicosatrienoic acid (20:3n-9, ETrA) is also suggested to antagonize arachidonic acid (AA) metabolism, but its effect on PAF generation in leukocytes has not been defined. In the present study, we investigated the effects of an ETrA-rich diet on PAF generation and AA metabolism in mouse peritoneal cells, which were compared with those of a docosahexaenoic acid (DHA)-rich diet. Mice were fed a diet supplemented with a lipid preparation rich in ETrA, a DHA-rich fish oil (FO) or palm oil (PO) for 3 weeks, and peritoneal cells containing more than 80% of monocytes/macrophages were obtained. The peritoneal cells in the DHA and ETrA diet groups generated upon zymosan stimulation a smaller amount of PAF than cells in the PO diet group. In the peritoneal cells of the DHA diet group, AA contents in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were significantly lower than those in cells of the PO diet group, but those in phosphatidylinositol (PI) were not significantly different between the two dietary groups. A considerable amount of ETrA was incorporated into the peritoneal cells of the ETrA diet group, and AA was reduced as compared with the PO diet group. These changes occurred preferentially in PI but to a less extent in PC and PE. The amount of free AA released by the peritoneal cells upon zymosan stimulation was significantly reduced in the DHA diet group as compared with that in the PO diet group, whereas AA release was similar between the PO and ETrA diet groups. In conclusion, the effects of dietary ETrA on AA content in the phospholipid subclasses and AA release were quite different from those of dietary DHA, although both diets suppressed PAF generation in mouse peritoneal cells to a similar extent.  相似文献   

10.
Our recent findings indicate that glucose-induced insulin secretion from isolated pancreatic islets is temporally associated with accumulation of substantial amounts of free arachidonic acid and that arachidonate may serve as a second messenger for intracellular calcium mobilization in islets. In an effort to determine the source of this released arachidonate, the endogenous fatty acid composition of phospholipids from islets has been determined by thin-layer chromatographic separation of the phospholipids, methanolysis to the fatty acid methyl esters, and quantitative gas chromatographic analyses. The relative abundance of phospholipids in islets as judged by their fatty acid content was phosphatidylcholine (PC), 0.63; phosphatidylethanolamine (PE), 0.23; phosphatidylinositol (PI), 0.067; phosphatidylserine (PS), 0.049. Arachidonate constituted 17% of the total islet fatty acid content, and PC contained 43% of total islet arachidonate. Islets incubated with [3H]arachidonate in the presence of 28 mM D-glucose incorporated radiolabel into PC with a considerably higher specific activity than that of PE, PS or PI. The total fatty acid content of PC from islets incubated with 28 mM glucose for 30 min was significantly lower than that of islets incubated with 3 mM glucose, and smaller effects were observed with PE, PS and PI. The molar decrement in PC arachidonate was 3.2 pmol/islet under these conditions, which is sufficient to account for the previously observed accumulation of free arachidonate (2 pmol/islet). A sensitive method involving negative ion-chemical ionization-mass spectrometric analyses of the pentafluorobenzyl esters of fatty acids derived from trace amounts of lysophosphatidylcholine (lyso-PC) was developed, and glucose-stimulation was found to reduce islet lyso-PC content by about 10-fold. These findings indicate that the insulin secretagogue D-glucose induces phospholipid hydrolysis in islets and suggest that PC may be the major source of free arachidonate which accumulates in glucose-stimulated islets.  相似文献   

11.
The present experiments characterized the incorporation and redistribution of arachidonic acid in diacyl and ether phospholipids of bovine aortic endothelial cells. Confluent cultures were either continuously labeled or pulse labeled with [14C]arachidonic acid. Major lipid classes and ether-linked subclasses of phosphatidyl-ethanolamine (PE) and phosphatidylcholine (PC) were separated by high-performance liquid chromatography and thin-layer chromatography. During continuous labeling, total incorporation of arachidonic acid reached a peak at 8 h and was essentially constant up to 24 h. After 8 h, net label in total PC declined, whereas that in total PE continued to rise. In pulse labeling experiments radioactivity in diacyl PC continuously declined with concomitant increases in both diacyl- and alkenylacyl PE. The data demonstrate that transfer of arachidonic acid from diacyl PC to both diacyl- and alkenylacyl PE occurs in endothelial cells. In contrast to previous observations in platelets, transfer of arachidonic acid to alkenylacyl PE did not require agonist stimulation. This pathway may contribute to the enrichment of endothelial cell PE with arachidonic acid with the potential for subsequent metabolism to prostacyclin.  相似文献   

12.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

13.
This study has quantitated changes in the content of labeled and unlabeled arachidonate of neutrophil phosphoglyceride classes and subclasses during cell activation with ionophore A23187. The predominant pools of endogenous arachidonate in the resting neutrophil were found in ethanolamine (68%)-, choline (19%)-, and inositol (12.0%)-containing glycerolipids. Upon stimulation, endogenous arachidonate was lost from primarily ethanolamine (PE) greater than choline (PC) greater than inositol (PI)-linked phosphoglycerides. Released leukotriene B4 and 20-hydroxyleukotriene B4 accounted for 10-35% of the total arachidonate lost from all phosphoglyceride classes. In contrast to the mass loss, ionophore induced a decrease of labeled arachidonate from primarily PC and PI. In the resting neutrophil, 66% of the total arachidonate in PC was found in the 1-alkyl-linked fraction. Furthermore, loss of endogenous arachidonate from 1-alkyl-2-arachidonoyl sn-glycero-3-phosphocholine accounted for 62% of the decrease of arachidonate from choline-linked phosphoglycerides. In contrast, 60% of the release of labeled arachidonate from PC subclasses originated from 1-acyl molecular species. 1-Alk-1'-enyl-2-acyl-sn-glycero-3-PE contained 71% of the arachidonate in ethanolamine-linked phosphoglycerides and was the major PE subclass which was degraded during neutrophil activation with ionophore A23187. These findings demonstrate that human neutrophils contain large ether-linked stores of arachidonate and the capacity to mobilize these stores. In addition, this study points out major discrepancies between using mass or label to determine sources of arachidonate for eicosanoids.  相似文献   

14.
Anandamide (N-arachidonoylethanolamine, AEA), an endogenous cannabinoid receptor agonist, causes potent vasodilation in the cerebral circulation through an endothelial-dependent or -independent mechanism. We have investigated the processing of [3H]AEA in cultured mouse cerebral microvascular endothelial cells (MEC) in order to better understand its mechanism of action in the cerebral vasculature. These cells took up anandamide very quickly, reaching a maximum value in 5 min and remaining at that level for at least 8 h. Analysis of the cell lipids demonstrated that, in addition to free anandamide, radioactivity was incorporated into phosphatidylcholine (PC), phosphatidylinositol (PI), and phosphatidylethanolamine (PE) in a time-dependent manner. Analysis of the hydrolyzed cell lipids indicated that anandamide was converted to arachidonic acid, a process that was inhibited by the selective fatty acid amide hydrolase inhibitor oleyl trifluoromethyl ketone (OTMK). Phospholipase A2 (PLA2) hydrolysis of the PC, PI, and PE fractions indicated that the arachidonic acid formed from anandamide was esterified predominately into sn-2 position of the endothelial phospholipids. Furthermore, anandamide and arachidonic acid were released when the cells were incubated with A23187. These results suggest that the biological activity of anandamide might be regulated by its rapid uptake and calcium-dependent release in endothelial cells, and conversion of anandamide to arachidonic acid might serve as an inactivation process in the cerebral microcirculation.  相似文献   

15.
1. De novo synthesis of phospholipid and its catabolism in human leukemia monocytic THP-1 cells were investigated. 2. Radiolabelled precursors: [methyl-3H]chloride, [1,2-14C]ethanolamine and myo-[2-3H]inositol were readily incorporated into CHCl3-MEOH extractable lipid fraction as a function of time. 3. The radiolabels derived from choline, ethanolamine and inositol were preferentially incorporated into PC, PE and PI fraction, respectively. The data indicate that de novo PL synthesis takes place, and the CDP-choline pathway is operative as a major pathway for PC synthesized in THP-1 cells. 4. Bacterial endotoxin dose-dependently stimulated the incorporation of radiolabelled precursors. Approximately 50% stimulation in PC and PE synthesis was obtained in 20 hr, while the incorporation of [3H]inositol was rapidly stimulated by 170% within 4 hr, and the stimulation declined drastically thereafter. 5. LPS did not alter the radiolabel distribution into PL in any of the three cases. 6. In pulse-chase studies, the cells prelabelled with radioactive PL were exposed to LPS (1 micrograms/ml). The breakdown of PC was enhanced about 30% within the first 2 hr followed by a stimulated PC synthesis observed in the next 4 hr. In contrast, LPS did not induce the hydrolysis of PE and PI. 7. The data indicate that LPS produces a broad spectrum of stimulatory effects on PL synthesis and selectively stimulates the hydrolysis of PC via phospholipase C/D reaction in THP-1 cells.  相似文献   

16.
1. A rapid uptake and esterification of [14C]arachidonic acid during the first 4 hr of cultivation of ascites cells in serum-deprived medium was observed followed by a fast turnover of the fatty acid. 2. Labeling and turnover of esterified arachidonate in individual phospholipid classes was in the order: phosphatidylcholine (PC) greater than phosphatidylinositol (PI) much greater than phosphatidylinositol-4-phosphate (PIP) and -4,5-bisphosphate (PIP2) greater than phosphatidylethanolamine (PE) greater than PE-plasmalogens. 3. In cells stimulated with 1-oleoyl-2-acetyl-sn-glycerol a transient course of arachidonic acid incorporation into PC, PI, PIP and PIP2 was determined peaking 30 min after stimulation, indicating both esterification and release under these conditions. 4. The release of arachidonate was blocked by quinacrine which is a specific inhibitor of phospholipase A2.  相似文献   

17.
The concentration of various phospholipids (PLs) and sphingomyelin in platelets and the amount of [14C] arachidonic acid ([14C]-AA) esterified in phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) were measured. The platelet-rich plasmas from unmedicated patients with psychiatric disorders and healthy controls were incubated for 30 min with 1 microM [14C]-AA. Platelets from patients with a schizoaffective disorder according to RDC criteria, a schizophreniform disorder (DSM III criteria) or an atypical phasic psychosis according to FC criteria contained twice as much PI and had significantly increased concentrations of PC as compared to controls (p less than 0.05, t-test). A highly significant (40-70%) reduced rate of esterification of [14C]-AA into PI/PS, PC and PE was found in platelets from patients with schizophreniform, schizoaffective and major depressive disorders but not in platelets from patients with chronic schizophrenia. The largest reduced esterification of [14C]-AA (about 70%) was found in PI/PS of platelets from patients with schizoaffective disorders (1.9 +/- 0.7 vs 6.3 +/- 1.7 mumol [14C]-AA/mol PI/PS; p less than 10(-4), t-test). The results indicate that changes in the metabolism of arachidonic acid and phosphatidylinositol and, to a lesser degree, of phosphatidylcholine in platelets are characteristic of patients with a likely favorable outcome of a psychotic episode.  相似文献   

18.
We have investigated the metabolism of 1-O-[3H]octadecyl-sn-glycero-3-phosphocholine ([3H]lyso PAF) and [3H]myristic acid in secondary cultures of aortic smooth muscle cells (SMC) to characterize the origin of second messengers generated upon stimulation with endothelin-1 (ET-1). When cells were labelled with [3H]lyso PAF, we observed a transfer of the label from phosphatidylcholine (PC) to phosphatidylethanolamine (PE). In contrast, incubation with [3H]myristate labelled mainly PC. Both precursors were incorporated into all PC and PE subclasses. However, [3H]lyso PAF labelled mainly alkyl-subclasses while [3H]myristate was associated with diacyl-subclasses. Using these specific labelling procedures, we have shown that ET-1 induced a strong hydrolysis of PE. This hydrolysis was specific for alkyl-PE with a maximum after 5 s of stimulation. We have also observed an extracellular Ca2+-dependent increase in diglyceride (DG), phosphatidic acid (PA) and mainly triglyceride (TG) concomitant to alkyl-PE hydrolysis. Thus, alkyl-DG generated from alkyl-PE appears to be a major product in ET-1 stimulation of SMC. These results suggest a new level of complexity in the signal transduction cascade involving a specificity for phospholipid subclasses.  相似文献   

19.
Neutrophils respond to chemoattractants by aggregating, degranulating, remodelling of phospholipids and releasing arachidonic acid. To determine whether ligand-induced remodelling of phospholipids depends on redistribution of intracellular organelles (degranulation), we compared phospholipid remodelling of human neutrophils with that of neutrophil-derived cytoplasts. Cytoplasts, organelle-depleted vesicles of cytosol surrounded by plasmalemma, cannot degranulate. Without a stimulus, [3H]arachidonate was incorporated preferentially into phosphatidylinositol (PI) and phosphatidylcholine (PC). Exposure of cytoplasts and neutrophils prelabelled with [3H]arachidonate or [14C]glycerol to fMet-Leu-Phe (10(-7) M) induced rapid changes in distribution of label and mass of individual phospholipids: [3H]arachidonate in phosphatidic acid (PA) increased 500% (120 s), [14C]glycerol incorporation and mass of PA approached 200% of unstimulated values, and [3H]arachidonate in PI decreased continuously; these data are compatible with activity of a PI/PA cycle. However, the mass of PI in both preparations and [14C]glycerol label in intact neutrophils increased initially (5 s), suggesting net synthesis and mobilization of more than one pool of PI. Heterogeneity of PC pools was also observed: [3H]arachidonate was lost from PC immediately upon addition of stimulus, whereas mass and [14C]glycerol values increased. Thus, net phospholipid synthesis, redistribution of arachidonate and activation of the PI/PA cycle are immediate responses of the neutrophil to receptor occupancy by chemoattractants. Furthermore, the similarity in response to fMet-Leu-Phe of neutrophils and granule-free cytoplasts indicates that these processes are independent of degranulation.  相似文献   

20.
Initial incorporation and subsequent remodeling of 16 phosphoglyceride molecular species containing arachidonate in the human neutrophil have been studied. Neutrophils were pulse-labeled with [3H]arachidonic acid (AA) for 5 min, then phospholipids were analyzed either at this time point or after a subsequent 120-min incubation. [3H]AA was found to be incorporated into phosphoglycerides phosphatidylinositol (PI) greater than phosphatidylcholine (PC) greater than phosphatidylethanolamine (PE) by 5 min. Incorporation of [3H]AA was not related to pool size, but reflected an increase in phosphoglyceride turnover. Following the 120-min incubation, only PE gained a significant amount of labeled arachidonate. Specific activity analysis revealed that PI contained the highest labeled/unlabeled ratio at both 5 min and 120 min. After the initial 5-min pulse, the majority of [3H]arachidonate was incorporated into 1-acyl-2-[3H]arachidonoyl-sn-glycero-3-PC, -PE, and -PI showing no preference for fatty acyl chains at the sn-1 position. However, [3H]AA was remodeled into 1-alkyl-acyl-and 1-alk-1-enyl-acyl-sn-glycero-3-PC and -PE molecular species in those neutrophils incubated for the additional 120 min. Specific activities of [3H]AA within all diacyl molecular species were initially higher relative to those alkyl-acyl and alk-1-enyl-acyl molecular species, but for PC and PE became more uniform as label shifted into ether and plasmalogen pools during the additional 120-min incubation. In contrast, the specific activity of 1-stearoyl-2-arachidonoyl-sn-glycero-3-PI remained constant throughout the 120-min incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号