首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brain insulin: regulation,mechanisms of action and functions   总被引:12,自引:0,他引:12  
1. While many questions remain unanswered, it is now well documented that, contrary to earlier views, insulin is an important neuromodulator, contributing to neurobiological processes, in particular energy homeostasis and cognition. A specific role on cognitive functions related to feeding is proposed, and it is suggested that brain insulin from different sources might be involved in the above vital functions in health and disease.2. A molecule identical to pancreatic insulin, and specific insulin receptors, are found widely distributed in the central nervous system networks related to feeding, reproduction, or cognition.3. The actions of insulin in the central nervous system may be under both multilevel and multifactorial controls. The amount of blood insulin reaching the brain, brain insulin stores and secretion, potential local biosynthesis and degradation of the peptide, and insulin receptors and signal transduction can be affected by metabolic factors induced by nutrients, hormones, neurotransmitters, and regulatory peptides, peripherally or in the central nervous system.4. Glucose and serotonin regulate insulin directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms regulating glucose-induced insulin secretion show some analogy with the mechanisms operating in the pancreas.5. A cross-talk between insulin and leptin receptors has been observed in the brain, and a regulation of central insulin actions, potentially via serotonin modulation, by leptin, galanin, melanocortins, and neuropeptide Y (NPY) is suggested.6. A more complete knowledge of the biological role of insulin in brain function and dysfunction, and of the regulatory mechanisms involved in these processes, constitutes a real advancement in the understanding of the pathophysiology of metabolic and mental diseases and could lead to important medical benefits.  相似文献   

2.
Half a century of biochemical and biophysical experiments has provided attractive models that may explain the diverse functions of microtubules within cells and organisms. However, the notion of functionally distinct microtubule types has not been explored with similar intensity, mostly because mechanisms for generating divergent microtubule species were not yet known. Cells generate distinct microtubule subtypes through expression of different tubulin isotypes and through post-translational modifications, such as detyrosination and further cleavage to Δ2-tubulin, acetylation, polyglutamylation and polyglycylation. The recent discovery of enzymes responsible for many tubulin post-translational modifications has enabled functional studies demonstrating that these post-translational modifications may regulate microtubule functions through an amazing range of mechanisms.  相似文献   

3.
Red blood cell aggregation is a complex multiple-factor process and exerts a substantial effect on realization of basic blood function: oxygen transport. Insufficient knowledge about mechanisms of erythrocyte aggregation in normal conditions and, especially, in pathological conditions, complicates the control and correction of possible negative consequences of this process. On addition, red blood cell aggregation process is a suitable model for the elucidation of basic patterns of intercellular interactions. The paper presents contemporary data on mechanisms of erythrocyte aggregation and contribution of plasma and membrane erythrocyte properties to this process. Currently available data on intracellular signal pathways are discussed.  相似文献   

4.
RGS2, a Regulators of G-protein Signaling family member, regulates signaling activities of G-proteins, and RGS2 itself is controlled in part by regulation of its expression. This investigation extended previous studies of the regulation of RGS2 expression by examining the effects of stress, differentiation, and signaling activities on RGS2 mRNA level in human neuroblastoma SH-SY5Y cells. Cell stress induced by heat shock rapidly and transiently increased RGS2 mRNA levels, whereas differentiation to a neuronal phenotype reduced basal RGS2 mRNA levels by 50%. RGS2 mRNA levels were increased in differentiated cells by heat shock, carbachol, and activation of protein kinase C. After transient transfection of GFP-tagged RGS2, a predominant nuclear localization was observed by confocal microscopy. Thus, RGS2 expression is regulated by stress and differentiation, as well as by second messenger signaling, and transfected GFP-RGS2 is predominantly nuclear.  相似文献   

5.
A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk). Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk.  相似文献   

6.
7.
8.
Modern concepts heterochrony mechanisms, taking into account the data on modularity of ontogenetic and evolutionary processes, morphogenetic fields of gene expression are considered. In the context of evolutionary changes, features of genetic regulation of heterochronies, and also suppression of gene activity by epigenetic regulation are analyzed. Features of the origin of evolutionary novelties due to heterochronies, macromutations, and divergence of duplicated genes, which result in the formation of new genes and gene families, are discussed.  相似文献   

9.
10.
Proteinase-activated receptor 1 (PAR(1)) induces activation of platelet and vascular cells after proteolytic cleavage of its extracellular N terminus by thrombin. In pathological situations, other proteinases may be generated in the circulation and might modify the responses of PAR(1) by cleaving extracellular domains. In this study, epitope-tagged wild-type human PAR(1) (hPAR(1)) and a panel of N-linked glycosylation-deficient mutant receptors were permanently expressed in epithelial cells (Kirsten murine sarcoma virus-transformed rat kidney cells and CHO cells). We have analyzed the role of N-linked glycosylation in regulating proteinase activation/disarming and cell global expression of hPAR(1). We reported for the first time that glycosylation in the N terminus of hPAR(1) downstream of the tethered ligand (especially Asn(75)) governs receptor disarming to trypsin, thermolysin, and the neutrophil proteinases elastase and proteinase 3 but not cathepsin G. In addition, hPAR(1) is heavily N-linked glycosylated and sialylated in epithelial cell lines, and glycosylation occurs at all five consensus sites, namely, Asn(35), Asn(62), Asn(75), Asn(250), and Asn(259). Removing these N-linked glycosylation sequons affected hPAR(1) cell surface expression to varying degrees, and N-linked glycosylation at extracellular loop 2 (especially Asn(250)) of hPAR(1) is essential for optimal receptor cell surface expression and receptor stability.  相似文献   

11.
The density and composition of cell surface proteins are major determinants for cellular functions. Regulation of cell surface molecules occurs at several levels, including the efficiency of surface transport, and is therefore of great interest. As the major phosphoprotein-binding modules, 14-3-3 proteins are known for their crucial roles in a wide range of cellular activities, including the subcellular localization of target proteins. Accumulating evidence suggests a role for 14-3-3 in surface transport of membrane proteins, in which 14-3-3 binding reduces endoplasmic reticulum (ER) localization, thereby promoting surface expression of membrane proteins. Here, we focus on recent evidence of 14-3-3-mediated surface transport and discuss the possible molecular mechanisms.  相似文献   

12.
13.
We have isolated and characterized a cDNA clone corresponding to a new member of bep (butanol, extracted, proteins) Paracentrotus lividus multigene family coding for cell surface proteins. The cDNA, called bep3, encodes a 370 amino acid protein and shares the same structural organization in the coding region with other members of the same gene family already characterized. Expression of this clone studied by Northern blot and by whole mount hybridization shows that the bep3 messenger is transcribed during oogenesis and utilized till the gastrula stage, whereas at the prism stage, unlike other members of the same gene family, new synthesis of messenger occurs. By whole mount hybridization spatial distribution of bep3 messenger in egg and embryos is established. This messenger appears located in the animal half of the unfertilized egg and moves to the cortical zone after fertilization; it is not present in the structures derived by the vegetal part of the embryo, such as the micromeres of the 16-cell stage, the primary mesenchyme cells of the blastula, and the primary intestine of the gastrula. At the prism stage instead, hybridization of bep3 messenger is restricted to the part of the embryo that will give origin to the oral region as successively confirmed by hybridization at the pluteus stage. The result of whole mount hybridization was confirmed by Northern blot hybridization of separated meso-macromere and micromere RNAs. A Southern blot experiment demonstrates that bep3 is codified by a single copy gene. Conservation of the bep multigene family in several Mediterranean and Japanese sea urchin species has also been analyzed. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Boar sperm glycoprotein fractions were isolated by Lens culinaris hemagglutinin affinity chromatography of detergent-solubilized ejaculated spermatozoa, followed by preparative sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. In order to develop methods for further investigations of the sperm proteins, we proceeded with two of the isolated glycoproteins. Antibodies were raised in female rabbits against each of the two sperm glycoproteins. By a combination of immunosorbent chromatography, using the antibodies obtained, and preparative SDS polyacrylamide gel electrophoresis, highly purified sperm proteins were isolated. The sperm proteins were immobilized on Sepharose gel columns and specific immunoglobulin Fab fragments were enriched by affinity chromatography. The specificity of the Fab fragments was ascertained by immunoprecipitation analysis. The Fab fragments were used in indirect immunofluorescence analysis to localize the corresponding antigens on the surface of boar spermatozoa. Both antigens were exclusively confined to the postacrosomal region. Immunohistochemical staining of boar testis sections revealed that both antigens are expressed from the spermatid stage. This technique also revealed that one of the antigens congregated at the Golgi complex-acrosome region during spermatogenesis.  相似文献   

15.
The bipolar spindle is a highly dynamic structure that assembles transiently around the chromosomes and provides the mechanical support and the forces required for chromosome segregation. Spindle assembly and chromosome movements rely on the regulation of microtubule dynamics and a fine balance of forces exerted by various molecular motors. Chromosomes are themselves central players in spindle assembly. They generate a RanGTP gradient that triggers microtubule nucleation and stabilization locally and they interact dynamically with the microtubules through motors targeted to the chromatin. We have previously identified and characterized two of these so-called chromokinesins: Xkid (kinesin 10) and Xklp1 (kinesin 4). More recently, we found that Hklp2/kif15 (kinesin 12) is targeted to the chromosomes through an interaction with Ki-67 in human cells and is therefore a novel chromokinesin. Hklp2 also associates with the microtubules specifically during mitosis, in a TPX2 (targeting protein for Xklp2)-dependent manner. We have shown that Hklp2 participates in spindle pole separation and in the maintenance of spindle bipolarity in metaphase. To better understand the function of Hklp2, we have performed a detailed domain analysis. Interestingly, from its positioning on the chromosome arms, Hklp2 seems to restrict spindle pole separation. In the present review, we summarize the current knowledge of the function and regulation of the different kinesins associated with chromosome arms during cell division, including Hklp2 as a novel member of this so-called chromokinesin family.  相似文献   

16.
17.
BACKGROUND: Expression and enzymatic activity of heme oxygenase (HO) has been implicated in the development, as well as in the resolution, of inflammatory conditions. Because inflammation is central to tissue repair, we investigated the presence and potential functions of HO in an excisional model of normal and diabetes-impaired wound repair in mice. MATERIALS AND METHODS: Expression of HO-1 during cutaneous healing was analyzed by RNase protection assay, Western blot, and immunohistochemical techniques in a murine model of excisional repair. Furthermore, we determined HO-1-dependent release of proinflammatory cytokines from RAW 264.7 macrophages by enzyme-linked immunosorbent assay (ELISA). RESULTS: Upon injury, we observed a rapid and strong increase in HO-1 mRNA and protein levels at the wound site. By contrast to normal repair, late stages of diabetes-impaired repair were associated with elevated HO-1 expression. Besides a few keratinocytes of the hyperproliferative epithelium, immunohistochemistry revealed infiltrating macrophages as the predominant and major source of HO-1 at the wound site. In vitro studies demonstrated the potency of exogenous and also endogenous nitric oxide (NO) to strongly induce HO-1 expression in RAW 264.7 macrophages. However, L-NIL-mediated enzymatic inhibition of inducible NO-synthase (iNOS) at the wound site in vivo was not paralleled by decreased HO-1 levels. In vitro inhibition of HO-1 enzymatic activity by tin protoporphyrin IX (SnPPIX) in RAW 264.7 macrophages markedly attenuated tumor necrosis factor-alpha (TNF-alpha), but strongly increased interleukin-1beta (IL-1beta) release in RAW 264.7 macrophages in vitro. CONCLUSIONS: The observed injury-mediated increase in HO-1 mRNA and protein at the wound site was due to infiltrating HO-1 expressing monocytic cells. Macrophage-derived HO-1 expression was not under regulatory control by NO in skin repair. We provide evidence that HO-1 might exert a regulatory role in macrophage-derived cytokine release.  相似文献   

18.
Ubiquitin: structures, functions, mechanisms   总被引:23,自引:0,他引:23  
Ubiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes in eukaryotic cells. Ubiquitin and its relatives carry out their functions through covalent attachment to other cellular proteins, thereby changing the stability, localization, or activity of the target protein. This article reviews the basic biochemistry of these protein conjugation reactions, focusing on ubiquitin itself and emphasizing recent insights into mechanism and specificity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号