首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vacuoles were isolated from Acer pseudoplatanus cells that were incubated with [14C]1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of [14C]1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) formation are consistent with the interpretation that MACC is synthesized in the cytosol, transported through the tonoplast, and accumulated in the vacuole. Twenty hours after chasing the labeled ACC with unlabeled ACC and adding 1 millimolar unlabeled MACC, all the [14C]MACC synthesized is located in the vacuole. Whole cells preloaded with [14C]MACC and then submitted to a continuous washing out, readily release their cytosolic MACC until complete exhaustion. The half-time of MACC efflux from the cytosol, calculated by the technique of compartmental analysis, is about 22 minutes. In contrast, vacuolar MACC remains sequestered within the vacuole. The transport of labeled MACC into the vacuole is stimulated by the presence of unlabeled MACC in the suspension medium, probably as a result of a reduced efflux of the labeled MACC from the cytosol into the suspending medium.  相似文献   

2.
The vasculature of the dorsal suture of cowpea (Vigna unguiculata [L.] Walp) fruits bled a sugar-rich exudate when punctured with a fine needle previously cooled in liquid N2. Bleeding continued for many days at rates equivalent to 10% of the estimated current sugar intake of the fruit. A phloem origin for the exudate was suggested from its high levels (0.4-0.8 millimoles per milliliter) of sugar (98% of this as sucrose) and its high K+ content and high ratio of Mg2+ to Ca2+. Fruit cryopuncture sap became labeled with 14C following feeding of [14C]urea to leaves or adjacent walls of the fruit, of 14CO2 to the pod gas space, and of [14C] asparagine or [14C]allantoin to leaflets or cut shoots through the xylem. Rates of translocation of 14C-assimilates from a fed leaf to the puncture site on a subtended fruit were 21 to 38 centimeters per hour. Analysis of 14C distribution in phloem sap suggested that [14C]allantoin was metabolized to a greater extent in its passage to the fruit than was [14C] asparagine. Amino acid:ureide:nitrate ratios (nitrogen weight basis) of NO3-fed, non-nodulated plants were 20:2:78 in root bleeding xylem sap versus 90:10:0.1 for fruit phloem sap, suggesting that the shoot utilized NO3-nitrogen to synthesize amino acids prior to phloem transfer of nitrogen to the fruit. Feeding of 15NO3 to roots substantiated this conclusion. The amino acid:ureide ratio (nitrogen weight basis) of root xylem sap of symbiotic plants was 23:77 versus 89:11 for corresponding fruit phloem sap indicating intense metabolic transfer of ureide-nitrogen to amino acids by vegetative parts of the plant.  相似文献   

3.
Chenopodium murale plants, induced to flower by 5 days of continuous light, produced 43% more ethylene than vegetative plants kept under short days (16 h darkness, 8 h light). The 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene production, using saturating ACC concentration (10 mol·m−3) was also 55% higher in induced plants. Their ACC and N-malonyl-ACC (MACC) levels were also higher, the former increasing by 56% in both shoots and roots, the latter by 288% and 108% in shoots and roots, respectively. Administration of labeled [2,3-14C]ACC produced a very similar relative content of ACC and MACC in both treatments. The only process influenced by flower induction was ACC conversion to ethylene. Induced plants converted 66% more ACC than the vegetative ones. The effects of photoperiod on ethylene formation and metabolism in a long-day plant (LDP)C. murale and a short-day plant (SDP)C. rubrum are compared. Ethylene formation seems to be under photoperiodic control in both species, but its role in flower induction remains obscure.  相似文献   

4.
Peanut seeds (Arachis hypogea L. Yue-you 551) contain 50 to 100 nanomoles per gram conjugated 1-aminocyclopropanecarboxylic acid (ACC). Based on paper chromatography, paper electrophoresis, and gas chromatography-mass spectrometry, it was verified that the major ACC conjugate was N-malonyl-ACC (MACC). Germinating peanut seeds converted [2-14C]ACC to ethylene 70 times more efficiently than N-malonyl-[2-14C]ACC; when ACC was administered, most of it was metabolized to MACC. Germinating peanut seeds produced ethylene and converted l-[3,4-14C]methionine to ethylene; this ethylene biosynthesis was inhibited by aminoethoxyvinylglycine. These data indicate that MACC occurs in peanut seeds but does not serve as the source of ethylene during germination; ethylene is, however, synthesized from methionine via ACC.  相似文献   

5.
Rapid direct conversion of exogenously supplied [14C]aspartate to [14C] asparagine and to tricarboxylic cycle acids was observed in alfalfa (Medicago sativa L.) nodules. Aspartate aminotransferase activity readily converted carbon from exogenously applied [14C]aspartate into the tricarboxylic acid cycle with subsequent conversion to the organic acids malate, succinate, and fumarate. Aminooxyacetate, an inhibitor of aminotransferase activity, reduced the flow of carbon from [14C]aspartate into tricarboxylic cycle acids and decreased 14CO2 evolution by 99%. Concurrently, maximum conversion of aspartate to asparagine was observed in aminooxyacetate treated nodules (30 nanomoles asparagine per gram fresh weight per hour. Metabolism of [14C]aspartate and distribution of nodulefixed 14CO2 suggest that two pools of aspartate occur in alfalfa nodules: (a) one involved in asparagine biosynthesis, and (b) another supplying a malate/aspartate shuttle. Conversion of [14C]aspartate to [14C]asparagine was not inhibited by methionine sulfoximine, a glutamine synthetase inhibitor, or azaserine, a glutmate synthetase, inhibitor. The data did not indicate that asparagine biosynthesis in alfalfa nodules has an absolute requirement for glutamine. Radioactivity in the xylem sap, derived from nodule 14CO2 fixation, was markedly decreased by treating nodulated roots with aminooxyacetate, methionine sulfoximine, and azaserine. Inhibitors decreased the [14C]aspartate and [14]asparagine content of xylem sap by greater than 80% and reduced the total amino nitrogen content of xylem sap (including nonradiolabeled amino acids) by 50 to 80%. Asparagine biosynthesis in alfalfa nodules and transport in xylem sap are dependent upon continued aminotransferase activity and an uninterrupted assimilation of ammonia via the glutamine synthetase/glutamate synthase pathway. Continued assimilation of ammonia apparently appears crucial to continued root nodule CO2 fixation in alfalfa.  相似文献   

6.
Waterlogging is known to cause an increase in ethylene synthesis in the shoot which results in petiole epinasty. Evidence has suggested that a signal is synthesized in the anaerobic roots and transported to the shoot where it stimulates ethylene synthesis. Experimental data are presented showing that 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, serves as the signal. Xylem sap was collected from detopped tomato plants (Lycopersicon esculentum Mill. cv. VFN8). ACC in the sap was quantitated by a sensitive and specific assay, and its tentative chemical identity verified by paper chromatography. ACC levels in both roots and xylem sap increased markedly in response to waterlogging or root anaerobiosis. The appearance of ACC in the xylem sap of flooded plants preceded both the increase in ethylene production and epinastic growth, which were closely correlated. Plants flooded and then drained showed a rapid, simultaneous drop in ACC flux and ethylene synthesis rate. ACC supplied through the cut stem of tomato shoots at concentrations comparable to those found in xylem sap caused epinasty and increased ethylene production. These data indicate that ACC is synthesized in the anaerobic root and transported to the shoot where it is readily converted to ethylene.  相似文献   

7.
Chenopodium rubrum plants, induced to flower by three cycles of 12 h darkness and 12 h light, produced 42% less ethylene than vegetative plants kept under continuous light. Plants that had each dark cycle broken by 2 h light in the middle did not flower and produced almost as much ethylene as the vegetative plants. Shoots and roots of plants of all three experimental treatments had a similar content of 1-aminocyclopropane-1-carboxylic acid (ACC), the mean amounting to about 2 nmol · g–1 dry weight. Also the content of N-malonyl-ACC (MACC) was similar in shoots of all three treatments. MACC content in roots was shown to be much higher, especially in the treatments with three dark periods (about 85 nmol · g–1 dry weight). When labeled [2,3-14C] ACC was administered, the relative contents of ACC and MACC were very similar among all three treatments. The only process influenced by flower induction was ACC conversion to ethylene. Induced plants converted 36% less ACC than the vegetative ones. Plants subjected to night-break converted almost as much ACC to ethylene as vegetative plants. It is concluded that flower induction in the short-day plantChenopodium rubrum decreases ethylene production by decreasing their capability of converting ACC to ethylene.  相似文献   

8.
Summary Comparisons were made of the levels of various solutes in xylem (tracheal) sap and fruit tip phloem sap of Lupinus albus (L.) and Spartium junceum (L.). Sucrose was present at high concentration (up to 220 mg ml-1) in phloem but was absent from xylem whereas nitrate was detected in xylem (up to 0.14 mg ml-1) but not in phloem. Total amino acids reached 0.5–2.5 mg ml-1 (in xylem) versus 16–40 mg ml-1 in phloem. Phloem: xylem concentration ratios for mineral nutrients (K, Na, Mg, Ca, Fe, Zn, Mn, Cu) spanned the range 0.7 to 20, the ratios generally reflecting an element's phloem mobility and its availability to the xylem from the roots.The accessibility of nitrate to xylem and phloem was studied in Lupinus. Increasing the nitrate supply to roots from 100 to 1000 mg NO3–Nl-1 increased nitrate spill over into xylem, but nitrate always failed to appear in phloem. However, phloem loading of small amounts of nitrate was induced by feeding 750 or 1000 mg NO3–Nl-1 directly to cut shoots via the transpiration stream. Transfer of reduced nitrogen to phloem was demonstrated by feeding 15NO3 to shoots and recovering 15N-enriched amides and amino acids in phloem sap. Increased nitrate supply to roots led to increased amino acid levels in xylem and phloem but did not alter markedly the balance between individual amino acids.The fate of xylem-fed 14C-labelled asparagine, glutamine and aspartic acid and of photosynthetically fed 14CO2 was studied in Spartium, with reference to phloem transport to seeds. Substantial fractions of the 14C of all sources appeared in non-amino compounds. [14C]asparagine passed largely in unchanged form to the phloem whereas the 14C from aspartic acid or glutamine appeared in phloem attached to other amino acids (e.g. asparagine and glutamic acid). Serine, asparagine and glutamine were the main amino compounds labelled in phloem sap after feeding 14CO2. The wide distribution of 14C amongst free and bound amino acids of seeds suggested that extensive metabolism of phloem-borne solutes occurred in the fruits.  相似文献   

9.
In etiolated, 5-day-old pea (Pisum sativum L.) seedlings a significantly more intensive growth of buds situated in the axil of the excised cotyledons was observed as early as 4 hours after decapitation and excision of one cotyledon of each pair. If [8-14C]benzyladenine ([14C]BA) was applied to roots of intact plants 10 hours prior to such decapitation and excision, significantly higher both total and specific 14C activities were observed in buds situated on the side of the excised cotyledons as early as 4 hours after decapitation and excision. Although the removal of a substantial part of the root system carried out simultaneously with decapitation and excision of one cotyledon resulted in a decrease in total 14C activity of buds, nevertheless a higher accumulation of 14C activity was maintained in buds situated on the side of excised cotyledon. If [14C]BA was applied to roots of seedlings after they were decapitated and deprived of one cotyledon, both total and specific 14C activities of buds situated on the side of excised cotyledons were significantly higher as early as the end of uptake of [14C]BA by roots, i.e. after 10 hours. On the other hand, [1,2-3H]gibberellin A1 applied to roots of intact and/or decapitated and one-cotyledon-deprived seedlings in the same way as [14C]BA did not appear in the buds until very much later and only in negligible amounts (i.e.3H activity). This indicates that the release of buds from apical dominance represents an active and selective process which can result from the ability of buds to utilize and/or synthesize only certain growth substances within a certain time interval.  相似文献   

10.
The content of 14C in the products of photosynthesis of the source leaf and xylem sap was investigated in kidney bean (Phaseolus vulgaris L.) plants during the stage of mass tillering. 14C partition was measured a day after two-minute photoassimilation of 14CO2 by an individual mature leaf located in the middle part of the shoot. The source-sink relations were disturbed by the excision of all mature leaves (except the source leaf) or all growing axillary shoots. The leaves or growing axillary shoots were excised 15 min after leaf feeding with 14C2. A day later, in plants with excised growing axillary shoots, the content of 14C in the source leaf was by 18% higher and in those with removed leaves by 15% lower than in control plants. The next day after the excision of growing axillary shoots, radioactivity of the xylem sap increased; after defoliation, both the volume of the xylem sap and its specific radioactivity decreased. In the xylem sap of defoliated plants, the proportion of 14C in malate decreased more than six times, whereas the proportion of 14C in amino acids somewhat increased (1.5 times). In two days, the volume of the xylem sap exuded by treated plants became the same as in control plants and its radioactivity decreased almost by an order of magnitude but essentially did not differ in the both types of treatment. It is concluded that the processes occurring in the roots are governed by photosynthesis but its regulatory effect is limited by a photoperiod and largely depends on changes in the ratio between biosynthesis of amino acids in the roots and leaves.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 518–521.Original Russian Text Copyright © 2005 by Chikov, Bakirova, Batasheva, Sergeeva.  相似文献   

11.
A method for the quantitation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugated form of 1-aminocyclopropane-1-carboxylic acid (ACC), in plants is described. [2,2,3,3-2H4]MACC has been used as an internal standard for selected ion monitoring/isotope dilution quantitation of MACC in wheat seedlings and in tomato leaves. This method is compared with a widely-used two step indirect assay for MACC, which is based upon hydrolysis of MACC to ACC and conversion of ACC by hypochlorite reagent to ethylene which is subsequently quantified by gas chromatography.  相似文献   

12.
Filament and corolla growth in flowers of Ipomoea nil are inhibited by ethylene production. Anthers inhibited filament growth in vitro during younger stages of development even in the presence of the growth promoter gibberellic acid (GA3). To test whether the anthers could be sources of 1-aminocyclopropane-1-carboxylic acid (ACC) endogenous levels of ACC and ethylene production were monitored using gas chromatography. To also test whether the filaments could be transport vectors for ACC the movement of [14C]ACC was assessed by scintillation counting from donor agarose blocks, through filament sections, and into receiver agarose blocks. While ACC levels fluctuated in anthers 87 to 21 h before anthesis, anthers contained increased levels of ACC from 15 to 6 hours before anthesis. Ethylene production also fluctuated but peak levels were shifted about 6 hours closer to anthesis than ACC levels within the anthers. Both ACC and ethylene levels in filaments showed fluctuations similar to those in the anthers. [14C]ACC movement became increasingly basipetal during development. Older stages showed greater polar [14C]ACC efflux rates, while all stages showed constant polar influx rates. Low levels of endogenous ACC were transported basipetally from the anther through the filament into agarose blocks at all stages of development. Corresponding levels of endogenous ethylene production remained constant between the various stages during ACC transport. We have evidence that stamens of I. nil have a role as source tissues and transport vectors for ACC, to stimulate corolla growth, such as corolla unfolding and senescence.  相似文献   

13.
The ureides, allantoin and allantoic acid, are the major nitrogenous substances transported within the xylem of N2-fixing soybeans (Glycine max L. Merr. cv Amsoy 71). The ureides accumulated in the cotyledons, roots and shoots of soybean seedlings inoculated with Rhizobium or grown in the presence of 10 millimolar nitrate. The patterns of activity for uricase and allantoinase, enzymes involved in ureide synthesis, were positively correlated with the accumulation of ureides in the roots and cotyledons. Allopurinol and azaserine inhibited ureide production in 3-day-old cotyledons while no inhibition was observed in the roots. Incubation of 4-day-old seedlings with [14C]serine indicated that in the cotyledons ureides arose via de novo synthesis of purines. The source of ureides in both 3- and 4-day-old roots was probably the cotyledons. The inhibition of ureide accumulation by allopurinol but not azaserine in 8-day-old cotyledons suggested that ureides in these older cotyledons arose via nucleotide breakdown. Incubation of 8-day-old plants with [14C]serine suggested that the roots had acquired the capability to synthesize ureides via de novo synthesis of purines. These data indicate that both de novo purine synthesis and nucleotide breakdown are involved in the production of ureides in young soybean seedlings.  相似文献   

14.
Since 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the major conjugate of 1-aminocyclopropane-1-carboxylic acid (ACC) in plant tissues, is a poor ethylene producer, it is generally thought that MACC is a biologically inactive end product of ACC. In the present study we have shown that the capability of watercress (Nasturtium officinale R. Br) stem sections and tobacco (Nicotiana tabacum L.) leaf discs to convert exogenously applied MACC to ACC increased with increasing MACC concentrations (0.2-5 millimolar) and duration (4-48 hours) of the treatment. The MACC-induced ethylene production was inhibited by CoCl2 but not by aminoethoxyvinylglycin, suggesting that the ACC formed is derived from the MACC applied, and not from the methionine pathway. This was further confirmed by the observation that radioactive MACC released radioactive ACC and ethylene. A cell-free extract, which catalyzes the conversion of MACC to ACC, was prepared from watercress stems which were preincubated with 1 millimolar MACC for 24 hours. Neither fresh tissues nor aged tissues incubated without external MACC exhibited enzymic activity, confirming the view that the enzyme is induced by MACC. The enzyme had a Km of 0.45 millimolar for MACC and showed maximal activity at pH 8.0 in the presence of 1 millimolar MnSO4. The present study indicates that high MACC levels in the plant tissue can induce to some extent the capability to convert MACC to ACC.  相似文献   

15.
We describe a method for perfusing the xylem in the stele of excised onion roots with solutions of known composition under a pressure gradient. Tracer studies using [14C] polyethylene glycol 4000 and the fluorescent dye, Tinopal CBSX, indicated that perfusing solutions passed exclusively through the xylem vessels. The conductance of the xylem was small over the apical 100 mm of the root axis but increased markedly between 100 and 200 mm. Unbuffered perfusion solutions supplied in the range pH 3.7–7.8 emerged after passage through the xylem adjusted to pH 5.2–6.0, indicating the presence of mechanisms for absorbing or releasing protons. This adjustment continued over many hours with net proton fluxes apparently determined by the disparity between the pH of the perfusion solution and the usual xylem sap pH of about 5.5. Mild acidification of the xylem sap by buffered perfusion solutions increased the release of 86Rb (K+) and 35SO4 2- from the stelar tissue into the xylem stream. The ion-transporting properties of onion roots seemed little changed by excision from the bulbs, or by removal of the apical zones of the root axis. The pH of sap produced by root pressure resembles that found in the outflow solutions of perfused root segments.  相似文献   

16.
Pulse-chase feeding (30-120 minutes) of 14C-labeled nitrogenous compounds to cut transpiring shoots was used to investigate the early fate of the major xylem-borne solutes in N2-fixing soybean (Glycine max) plants at the V4 growth stage. By comparison with the foliar distribution of [14C]inulin (a xylem marker), it was determined that the phloem supply of allantoin, allantoic acid, asparagine, glutamine, aspartate, and arginine, respectively, provided about 20, 10, three, two, five, and 20 times the 14C delivered to the developing trifoliolate in the xylem stream. Recovery of unmetabolized asparagine, aspartate, and arginine in this indicator trifoliolate, and significant declines in the percentage of 14C from allantoic acid and allantoin recovered in the first trifoliolate, provided some support for the direct xylem-to-phloem transfer of these compounds, but did not preclude the involvement of indirect transfer. Data on stem retention and foliar distribution, expressed as a function of the relative xylem sap composition, indicated that ureides provide the major sources of nitrogen to all plant parts. There was no consistent distinction in distribution patterns between pairs of similar anionic and neutral compounds. The extent of xylem-to-phloem transfer among the ureido or the amino compounds was inversely related to its prominence in xylem sap.  相似文献   

17.
Diurnal water balance of the cowpea fruit   总被引:9,自引:1,他引:8       下载免费PDF全文
The vascular network of the cowpea (Vigna unguiculata [L.] Walp.) fruit exhibits the anatomical potential for reversible xylem flow between seeds, pod, and parent plant. Feeding of cut shoots with the apoplast marker acid fuchsin showed that fruits imported regularly via xylem at night, less frequently in early morning, and only rarely in the afternoon. The dye never entered seeds or inner dorsal pod strands connecting directly to seeds. Root feeding (early morning) of intact plants with 32PO4 or 3H2O rapidly (20 min) labeled pod walls but not seeds, consistent with uptake through xylem. Weak subsequent (4 hours) labeling of seeds suggested slow secondary exchange of label with the phloem stream to the fruit. Vein flap feeding of subtending leaves with [14C]sucrose, 3H2O, and 32PO4 labeled pod and seed intensely, indicating mass flow in phloem to the fruit. Over 90% of the 14C and 3H of fruit cryopuncture phloem sap was as sucrose and water, respectively. Specific 3H activities of transpired water collected from fruits and peduncles were assayed over 4 days after feeding 3H2O to roots, via leaf flaps, or directly to fruits. The data indicated that fruits transpired relatively less xylem-derived (apoplastic) water than did peduncles, that fruit and peduncle relied more heavily on phloem-derived (symplastic) water for transpiration in the day than at night, and that water diffusing back from the fruit was utilized in peduncle transpiration, especially during the day. The data collectively support the hypothesis of a diurnally reversing xylem flow between developing fruit and plant.  相似文献   

18.
The effect of ambient ammonium (0.5 millimolar [14NH4]2SO4) added to a nutrient solution containing 1.0 millimolar K15NO3, 99 atom per cent 15N, upon [15N]nitrate assimilation and utilization of previously accumulated [14N]nitrate was investigated. Corn seedlings, 5-day-old dark-grown decapitated (experiment I) and 10-day-old light-grown intact (experiment II), which had previously been grown on K14NO3 nutrient solution, were used. In both experiments, the presence of ambient ammonium decreased [15N]nitrate influx (20% after 6 hours) without significantly affecting the efflux of previously accumulated [14N]nitrate. In experiment I, relative reduction of [15N]nitrate (reduction as a percentage of influx) was inhibited more than was [15N]nitrate influx. Nevertheless, in experiment I, where all reduction could be assigned to the root system, the absolute inhibition of reduction during the 12 hours (13 micromoles/root) was less than the absolute inhibition in influx (24 micromoles/root). The data suggest that the influence of ammonium on [15N]nitrate influx could not be totally accounted for by the decrease in the potential driving force which resulted from restricted reduction; an additional impact on the influx process is indicated. Reduction of [15N]nitrate in experiment II after 6 hours accounted for 30 and 18% of the tissue excess 15N in the control and ammonium treatments, respectively. Relative distribution of 15N between roots and exudate (experiment I), or between roots and shoots (experiment II) was not affected by ammonium. On the other hand, the accumulation of [15N]nitrate in roots, shoots, and xylem exudate was enhanced by ammonium treatment compared to the control, whereas the accumulation of reduced 15N was inhibited.  相似文献   

19.
The mechanisms underlying the vacuolar retention or release of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the conjugated form of the ethylene precursor, has been studied in grape (Vitis vinifera) cells grown in vitro using the technique of compartmental analysis of radioisotope elution. Following its accumulation in the vacuole, M[2,3-14C]ACC could be released from cells when the vacuolar pH was artificially lowered by external buffers from its initial value of 6.2 to below the critical pH of 5.5. Successive release and retention of vacuolar MACC could be achieved by switching the vacuolar pH from values lower and higher than 5.5. The rate constant of efflux was highly correlated with the vacuolar pH. In plant tissues having low vacuolar pH under natural conditions, e.g. apple fruits (pH 4.2) and mung bean hypocotyls (pH 5.3), an efflux of M[2,3-14C]ACC also occurred. Its rate constant closely corresponded to the theorical values derived from the correlation established for grape cells. Evidence is presented that the efflux proceeded by passive lipophilic membrane diffusion only when MACC was in the protonated form. In contrast to other organic anions like malic acid, the mono and diionic species could not permeate the tonoplast, thus indicating the strict dependence of MACC retention upon the ionic status of the molecule and the absence of carrier-mediated efflux.  相似文献   

20.
Transfer of the nitrogen and carbon of allantoin to amino acids and protein of leaflets, stems and petioles, apices, peduncles, pods, and seeds of detached shoots of nodulated cowpea (Vigna unguiculata L. Walp. cv. Caloona) plants was demonstrated following supply of [2-14C], [1,3-15N]allantoin in the transpiration stream. Throughout vegetative and reproductive growth all plant organs showed significant ureolytic activity and readily metabolized [2-14C]allantoin to 14CO2. A metabolic pathway for ureide nitrogen utilization via allantoic acid, urea, and ammonia was indicated. Levels of ureolytic activity in extracts from leaves and roots of nodulated cowpea were consistently maintained at higher levels than in non-nodulated, NO3 grown plants.

[14C]Ureides were recovered in extracts of aphids (Aphis craccivora and Macrosiphum euphorbieae) feeding at different sites on cowpea plants supplied with [2-14C]allantoin through the transpiration stream or to the upper surface of single leaflets. The data indicated that the ureides were effectively transferred from xylem or leaf mesophyll to phloem, and then translocated in phloem to fruits, apices, and roots.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号