共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
A global profile of germline gene expression in C. elegans 总被引:7,自引:0,他引:7
Reinke V Smith HE Nance J Wang J Van Doren C Begley R Jones SJ Davis EB Scherer S Ward S Kim SK 《Molecular cell》2000,6(3):605-616
6.
Identification and expression profile analysis of the protein kinase gene superfamily in maize development 总被引:1,自引:0,他引:1
Kaifa Wei Yanmei Wang Daoxin Xie 《Molecular breeding : new strategies in plant improvement》2014,33(1):155-172
Eukaryotic protein kinases (ePKs) evolved as a family of highly dynamic molecular switches that serve to orchestrate the activity of almost all cellular processes. Some of the functionally characterized ePKs from plants have been found to be components of signaling networks, such as those for the perception of biotic agents, light quality and quantity, plant hormones, and various adverse environmental conditions. To date, only a tiny fraction of plant ePKs have been functionally identified, and even fewer have been identified in maize [Zea mays (Zm)]. In this study, we have identified 1,241 PK-encoding genes in the maize genome. Phylogenetic analyses identified eight gene groups with considerable conservation among groups, and each group could be further divided into multiple families and/or subfamilies. Similar intron/exon structural patterns were observed in the same families/subfamilies, strongly supporting their close evolutionary relationship. Chromosome distribution and genetic analysis revealed that tandem duplications and segmental/whole-genome duplications might represent two of the major mechanisms contributing to the expansion of the PK superfamily in maize. The dynamic expression patterns of ZmPK genes across the 60 different developmental stages of 11 organs showed that some members of this superfamily exhibit tissue-specific expression, whereas others are more ubiquitously expressed, indicative of their important roles in performing diverse developmental and physiological functions during the maize life cycle. Furthermore, RNA-sequence-based gene expression profiling of PKs along a leaf developmental gradient and in mature bundle sheath and mesophyll cells indicated that ZmPK genes are involved in various physiological processes, such as cell-fate decisions, photosynthetic differentiation, and regulation of stomatal development. Our results provide new insights into the function and evolution of maize PKs and will be useful in studies aimed at revealing the global regulatory network of maize development, thereby contributing to the maize molecular breeding with enhanced quality traits. 相似文献
7.
8.
9.
P K Duitsman H W Chen L R Cook S Hendrich 《Prostaglandins, leukotrienes, and essential fatty acids》1992,47(1):63-68
Groups of eight weanling female F344/N rats were fed semipurified diets that supplied 0, 50, 500, 5000, or 15,000 mg alpha-tocopherol acetate/kg diet, with and without 0.05% phenobarbital (PB) for 9 weeks. Both plasma and hepatic alpha-tocopherol levels, measured by HPLC, strongly correlated with alpha-tocopherol intake (r greater than 0.73, p less than 0.0001). Phenobarbital both depleted hepatic alpha-tocopherol and increased plasma alpha-tocopherol significantly. Although treatment with PB for 9 weeks significantly increased GST activity, PB did not affect hepatic prostaglandin (PG)F2 alpha status, as determined by radioimmunoassay. PGF2 alpha was significantly greater (by 52%) in rats fed no alpha-tocopherol than in rats fed 15,000 mg alpha-tocopherol acetate/kg diet. Hepatic PGF2 alpha status was correlated inversely but weakly with dietary alpha-tocopherol (r = -0.24, p less than 0.05). Hepatic PGF2 alpha status was not correlated with hepatic or plasma alpha-tocopherol status. This finding suggests either that there is a small depletion-resistant subcellular alpha-tocopherol pool which regulates PGF2 alpha production or that alpha-tocopherol alters PGF2 alpha production in vivo by an indirect mechanism. 相似文献
10.
Lei-Miao Yin Gong-Hao Jiang Yu Wang Yan Wang Yan-Yan Liu Wei-Rong Jin Yu-Dong Xu Qing-Hua Zhang Yong-Qing Yang 《Journal of biomedical science》2009,16(1):46-13
Background
Asthma has become an important public health issue and approximately 300 million people have suffered from the disease worldwide. Nowadays, the use of acupuncture in asthma is increasing. This study intended to systematically analyze and compare the gene expression profiles between the asthmatic and acupuncture-treated asthmatic rat lung, and tried to gain insight into the molecular mechanism underlying the early airway response (EAR) phase of asthma treated by acupuncture. 相似文献11.
Kyung-Duk Min Yulin Liao Hidetoshi Okazaki Kazunori Fujimoto Ayako Takahashi Satoru Yamazaki Shoji Sanada Atsushi Nakano Toshiaki Otsuka Tadashi Isomura Naoki Mochizuki 《Biochemical and biophysical research communications》2010,393(1):55-7396
Although various management methods have been developed for heart failure, it is necessary to investigate the diagnostic or therapeutic targets of heart failure. Accordingly, we have developed different approaches for managing heart failure by using conventional microarray analyses. We analyzed gene expression profiles of myocardial samples from 12 patients with heart failure and constructed datasets of heart failure-associated genes using clinical parameters such as pulmonary artery pressure (PAP) and ejection fraction (EF). From these 12 genes, we selected four genes with high expression levels in the heart, and examined their novelty by performing a literature-based search. In addition, we included four G-protein-coupled receptor (GPCR)-encoding genes, three enzyme-encoding genes, and one ion-channel protein-encoding gene to identify a drug target for heart failure using in silico microarray database. After the in vitro functional screening using adenovirus transfections of 12 genes into rat cardiomyocytes, we generated gene-targeting mice of five candidate genes, namely, MYLK3, GPR37L1, GPR35, MMP23, and NBC1. The results revealed that systolic blood pressure differed significantly between GPR35-KO and GPR35-WT mice as well as between GPR37L1-Tg and GPR37L1-KO mice. Further, the heart weight/body weight ratio between MYLK3-Tg and MYLK3-WT mice and between GPR37L1-Tg and GPR37L1-KO mice differed significantly. Hence, microarray analysis combined with clinical parameters can be an effective method to identify novel therapeutic targets for the prevention or management of heart failure. 相似文献
12.
The zebrafish (Danio rerio) provides an excellent model for studying vertebrate development and human disease because of its ex utero, optically transparent embryogenesis and amenability to in vivo manipulation. The rapid embryonic developmental cycle, large clutch sizes and ease of maintenance at large numbers also add to the appeal of this species. Considerable genomic data has recently become publicly available that is aiding the construction of zebrafish microarrays, thus permitting global gene expression analysis. The zebrafish is also suitable for chemical genomics, in part as a result of the permeability of its embryos to small molecules and consequent avoidance of external confounding maternal effects. Finally, there is increasing characterization and analysis of zebrafish models of human disease. Thus, the zebrafish offers a high-quality, high-throughput bioassay tool for determining the biological effect of small molecules as well as for dissecting biological pathways. 相似文献
13.
Jousse C Averous J Bruhat A Carraro V Mordier S Fafournoux P 《Biochemical and biophysical research communications》2004,313(2):447-452
Regulation of gene expression by nutrients in mammals is an important mechanism allowing them to adapt their physiological functions according to the supply of nutrient in the diet. It has been shown recently that amino acids are able to regulate by themselves the expression of numerous genes. CHOP, asparagine synthetase, and IGFBP-1 regulation following AA starvation will be described in this review with special interest in the molecular mechanisms involved. 相似文献
14.
Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa 总被引:7,自引:0,他引:7
下载免费PDF全文

Pseudomonas aeruginosa is the dominant pathogen causing chronic respiratory infections in cystic fibrosis (CF). After an initial phase characterized by intermittent infections, a chronic colonization is established in CF upon the conversion of P. aeruginosa to the mucoid, exopolysaccharide alginate-overproducing phenotype. The emergence of mucoid P. aeruginosa in CF is associated with respiratory decline and poor prognosis. The switch to mucoidy in most CF isolates is caused by mutations in the mucA gene encoding an anti-sigma factor. The mutations in mucA result in the activation of the alternative sigma factor AlgU, the P. aeruginosa ortholog of Escherichia coli extreme stress sigma factor sigma(E). Because of the global nature of the regulators of mucoidy, we have hypothesized that other genes, in addition to those specific for alginate production, must be induced upon conversion to mucoidy, and their production may contribute to the pathogenesis in CF. Here we applied microarray analysis to identify on the whole-genome scale those genes that are coinduced with the AlgU sigmulon upon conversion to mucoidy. Gene expression profiles of AlgU-dependent conversion to mucoidy revealed coinduction of a specific subset of known virulence determinants (the major protease elastase gene, alkaline metalloproteinase gene aprA, and the protease secretion factor genes aprE and aprF) or toxic factors (cyanide synthase) that may have implications for disease in CF. Analysis of promoter regions of the most highly induced genes (>40-fold, P < or = 10(-4)) revealed a previously unrecognized, putative AlgU promoter upstream of the osmotically inducible gene osmE. This newly identified AlgU-dependent promoter of osmE was confirmed by mapping the mRNA 5' end by primer extension. The recognition of genes induced in mucoid P. aeruginosa, other than those associated with alginate biosynthesis, reported here revealed the identity of previously unappreciated factors potentially contributing to the morbidity and mortality caused by mucoid P. aeruginosa in CF. 相似文献
15.
Bladder carcinoma, which has the ninth highest incidence among malignant tumors in the world, is a complex, multifactorial disease. The malignant transformation of bladder cells results from DNA mutations and alterations in gene expression levels. In this work, we used a bioinformatics approach to investigate the molecular mechanisms of bladder carcinoma. Biochips downloaded from the Gene Expression Omnibus (GEO) were used to analyze the gene expression profile in urinary bladder cells from individuals with carcinoma. The gene expression profile of normal genomes was used as a control. The analysis of gene expression revealed important alterations in genes involved in biological processes and metabolic pathways. We also identified some small molecules capable of reversing the altered gene expression in bladder carcinoma; these molecules could provide a basis for future therapies for the treatment of this disease. 相似文献
16.
17.
18.
Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis 总被引:3,自引:0,他引:3
Poola I DeWitty RL Marshalleck JJ Bhatnagar R Abraham J Leffall LD 《Nature medicine》2005,11(5):481-483
Breast cancer is the second leading cause of cancer death for women in the United States. In 2005, about 215,000 cases of invasive breast cancer (IBC) and 50,000 cases of ductal carcinoma in situ will be diagnosed and 40,000 women will die of IBC in the US. Yet there is presently no molecular marker that can be used to detect a precancerous state or identify which premalignant lesions will develop into invasive breast cancer. Here we report the gene expression analysis of atypical ductal hyperplastic tissues from patients with and without a history of breast cancer. We identify MMP-1 as a candidate marker that may be useful for identification of breast lesions that can develop into cancer. 相似文献
19.