首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Deleterious mutations associated with human diseases are predominantly found in conserved positions and positions that are essential for the structure and/or function of proteins. However, these mutations are purged from the human population over time and prevented from being fixed. Contrary to this belief, here I show that high proportions of deleterious amino acid changing mutations are fixed at positions critical for the structure and/or function of proteins. Similarly, a high rate of fixation of deleterious mutations was observed in slow-evolving amino acid positions of human proteins. The fraction of deleterious substitutions was found to be two times higher in relatively conserved amino acid positions than in highly variable positions. This study also found fixation of a much higher proportion of radical amino acid changes in primates compared with rodents and artiodactyls in slow-evolving positions. Previous studies observed a higher proportion of nonsynonymous substitutions in humans compared with other mammals, which was taken as indirect evidence for the fixation of deleterious mutations in humans. However, the results of this investigation provide direct evidence for this prediction by suggesting that the excess nonsynonymous mutations fixed in humans are indeed deleterious in nature. Furthermore, these results suggest that studies on disease-associated mutations should consider that a significant fraction of such deleterious mutations has already been fixed in the human genome, and thus, the effects of new mutations at those amino acid positions may not necessarily be deleterious and might even result in reversion to benign phenotypes.  相似文献   

3.
Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase 2 (CAD2) are genes which may influence variation in lignin content and composition within plants. Sequence variation within these genes may be responsible for changes in enzyme activity and/or specificity, which could cause variation in lignin content or composition. This study examines sequence variation within these two genes in Eucalyptus globulus, an important species used in pulp and paper-making. Twenty-one single nucleotide polymorphisms (SNPs) were identified in the exons of CCR, of which nine were neutral mutations and 12 were missense mutations. Six of the missense mutations affected highly conserved amino acids within the protein sequence of CCR. Eight SNPs were identified in the CAD2 exons, six of which were neutral mutations and two which were missense mutations. One of the missense mutations affected a highly conserved amino acid within the protein sequence. In addition, 32 SNPs were identified in the CCR introns along with four insertion/deletions and two polyA length variation regions. Polymorphism affecting highly conserved amino acids may alter enzyme function and this molecular variation may be linked to variation in lignin profiles. Selecting positive alleles which produce favourable lignin profiles would be advantageous in tree breeding programs.  相似文献   

4.
We have previously reported that two highly conserved amino acids in the C-terminal domain of rat insulin-like growth factor-binding protein (IGFBP)-5, Gly(203) and Gln(209), are involved in binding to insulin-like growth factor (IGF)-1. Here we report that mutagenesis of both amino acids simultaneously (C-Term mutant) results in a cumulative effect and an even greater reduction in IGF-I binding: 30-fold measured by solution phase IGF binding assay and 10-fold by biosensor analysis. We compared these reductions in ligand binding to the effects of specific mutations of five amino acids in the N-terminal domain (N-Term mutant), which had previously been shown by others to cause a very large reduction in IGF-I binding (). Our results confirm this as the major IGF-binding site. To prove that the mutations in either N- or C-Term were specific for IGF-I binding, we carried out CD spectroscopy and showed that these alterations did not lead to gross conformational changes in protein structure for either mutant. Combining these mutations in both domains (N+C-Term mutant) has a cumulative effect and leads to a 126-fold reduction in IGF-I binding as measured by biosensor. Furthermore, the equivalent mutations in the C terminus of rat IGFBP-2 (C-Term 2) also results in a significant reduction in IGF-I binding, suggesting that the highly conserved Gly and Gln residues have a conserved IGF-I binding function in all six IGFBPs. Finally, although these residues lie within a major heparin-binding site in IGFBP-5 and -3, we also show that the mutations in C-Term have no effect on heparin binding.  相似文献   

5.
Pi J  Chow H  Pittard AJ 《Journal of bacteriology》2002,184(21):5842-5847
Site-directed mutagenesis was used to investigate a region of the PheP protein corresponding to the postulated consensus amphipathic region (CAR) in the GabP protein. Whereas some critical residues are conserved in both proteins, there are major differences between the two proteins which may reflect different functions for this region. Replacement of R317, Y313, or P341 by a number of other amino acids destroyed the PheP function. An R317E-E234R double mutant exhibited low levels of PheP transport activity, indicating that there is a possible interaction between these two residues in the wild-type protein. E234 is highly conserved in members of the superfamily of amino acid-polyamine-organocation transporters and also is critical for PheP function in the wild-type protein. Second-site suppressors were isolated for mutants with mutations in E234, Y313, R317, and P341. Most suppressor mutations were found to cluster towards the extracellular face of spans III, IX, and X. Some mutations, such as changes at M116, were able to suppress each of the primary changes at positions E234, Y313, R317, and P341 but were unable to restore function to a number of other primary mutants. The possible implications of these results for the tertiary structure of the protein are discussed.  相似文献   

6.
Arginine kinase, a member of phosphagen kinase, is a key enzyme in the cellular energy metabolism of invertebrates. A series mutation of conserved amino acid residue V65 was constructed to investigate its role in AK substrate synergism, structural stability and activity. Our study revealed that mutation in this conserved site could cause pronounced loss of activity, conformational changes and distinct substrate synergism alteration. Spectroscopic experiments indicated that these mutations influenced transition from the molten globule intermediate to the native state in folding process. These results provided herein suggest that amino acid residue V65 played a relatively important role in AK substrate synergism, structural stability and activity.  相似文献   

7.
A number of mutations within the Bacillus subtilis glutamine synthetase (GS) gene result in altered catalytic properties and overproduction of the GS antigen. The restriction fragments containing mutations from three such mutants were sequenced, and they all had amino acid changes in conserved residues found either within or near sequences contributing to the active site of the Salmonella typhimurium GS.  相似文献   

8.
Aminoglycoside-phosphotransferases contain several conserved amino acid sequence motifs. Using hydroxylamine we have obtained five independent missense mutations within the aphA-2 gene of transposon Tn5. Four of the mutations dramatically reduced antibiotic resistance. Two were identical and included the replacement of His-188 with Tyr. One other resulted from the replacement of Gly-189 with Asp. These three mutations map within the first of the conserved motifs. The replacement of Asp-261 with Asn maps to the third of these structural motifs. A mutation diminishing but not eliminating aminoglycoside resistance resulted from replacement of the conserved Val-36 with Met. By site-directed mutagenesis three additional mutants were obtained: His-188 was replaced with Leu and Ser, and Arg-211 within the second conserved motif was substituted by Gly. All three showed reduced levels of resistance to kanamycin. Our results show that these conserved motifs are essential for the biological activity of aminoglycoside phosphotransferases.  相似文献   

9.
Twenty-five mutations were created in the Drosophila melanogaster Act88F actin gene by in vitro mutagenesis and the mutant actins expressed in vitro. The affinity of the mutant actins for ATP, profilin and DNase I was determined. They were also tested for conformational changes by non-denaturing gel electrophoresis. Mutations at positions 364 (highly conserved) and 366 (invariant) caused changes in conformation, reduced ATP binding and increased profilin binding. At position 362 (invariant) only the conservative change from tyrosine to phenylalanine had no effect; other changes at this position affected conformation, ATP and profilin binding. Although only glycine or serine occur naturally at position 368, changes to threonine or glutamine had no effect on the actin. The mutant in which Asp363 was replaced by His and that in which Glu364 was replaced by Lys decreased DNase I binding, yet neither amino acid occurs in the DNase I binding site. Likewise several mutations affect ATP and profilin binding but are distant from the binding sites. We conclude that, although actin has a highly conserved amino acid sequence, individual amino acids can have variable tolerance for substitutions. Also amino acid changes can exert significant effects on the binding of ligands to distant parts of the actin structure.  相似文献   

10.
Zhai Y  Martinis SA 《Biochemistry》2005,44(47):15437-15443
The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have employed an editing mechanism to ensure fidelity in this first step of protein synthesis. The amino acid editing active site for Escherichia coli leucyl-tRNA synthetase resides within the CP1 domain that folds discretely from the main body of the enzyme. A portion of the editing active site is lined with conserved threonines. Previously, we identified one of these threonine residues (Thr(252)) as a critical amino acid specificity factor. On the basis of X-ray crystal structure information, two other nearby threonine residues (Thr(247) and Thr(248)) were hypothesized to interact with the editing substrate near its cleavage site. Single mutations of either of these conserved threonine residues had minimal effects on amino acid editing. However, double mutations that deleted the hydroxyl group from the neighboring threonine residues abolished amino acid editing activity. We propose that these threonine residues, which are also conserved in the homologous isoleucyl-tRNA synthetase and valyl-tRNA synthetase editing active sites, play a central role in amino acid editing. It is possible that they collaborate in stabilizing the transition state.  相似文献   

11.
We humans have many characteristics that are different from those of the great apes. These human-specific characters must have arisen through mutations accumulated in the genome of our direct ancestor after the divergence of the last common ancestor with chimpanzee. Gene trees of human and great apes are necessary for extracting these human-specific genetic changes. We conducted a systematic analysis of 103 protein-coding genes for human, chimpanzee, gorilla, and orangutan. Nucleotide sequences for 18 genes were newly determined for this study, and those for the remaining genes were retrieved from the DDBJ/EMBL/GenBank database. The total number of amino acid changes in the human lineage was 147 for 26,199 codons (0.56%). The total number of amino acid changes in the human genome was, thus, estimated to be about 80,000. We applied the acceleration index test and Fisher's synonymous/nonsynonymous exact test for each gene tree to detect any human-specific enhancement of amino acid changes compared with ape branches. Six and two genes were shown to have significantly higher nonsynonymous changes at the human lineage from the acceleration index and exact tests, respectively. We also compared the distribution of the differences of the nonsynonymous substitutions on the human lineage and those on the great ape lineage. Two genes were more conserved in the ape lineage, whereas one gene was more conserved in the human lineage. These results suggest that a small proportion of protein-coding genes started to evolve differently in the human lineage after it diverged from the ape lineage.  相似文献   

12.
乙型肝炎病毒(HBV)核心基因的变异及分析   总被引:1,自引:0,他引:1  
闻玉梅  马张妹 《病毒学报》1997,13(4):319-324
对18份不同类型的乙型肝炎病毒感染者血清及4份肝癌组织,用套式PCR扩增PreC/C基因,结果15份标本可供进行核苷酸序列分析。12例血清标本在C区均出现点突变并导致氨基酸改变。1份肝癌患者的血清及癌组织与另1份癌组织中获得的C基因克隆有213-324个核苷酸缺失。  相似文献   

13.
There is a region exhibiting a similarity of amino acid sequence near the carboxyl-terminal segment of each FAD-containing oxidoreductase. In this region, four amino acid residues-Thr, Ala, Gly, and Asp-are highly conserved. To determine the involvement of the four amino acid residues (Thr-469, Ala-476, Gly-478, and Asp-479) in the activity of NADH dehydrogenase of an alkaliphilic Bacillus, mutations of these amino acid residues were conducted. In spite of high conservation, mutations of Thr-469 and Ala-476 to Ala and Ser, respectively, did not lead to a critical loss of enzyme activity. However, mutations of Gly-478 and Asp-479 to Ala caused a complete loss of the activity, which appears to result from the loss of binding capacity of FAD.  相似文献   

14.
Several mutations have been identified in the first nucleocide binding fold (NBF) of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene. We have analyzed the DNA sequences of exons 10 and 11 in five different mammalian species, marmoset, mouse, cow, pig, and sheep; the amino acid conservation studied for nine disease mutations; and two “benign” mutations. For exon 10,87% homology at the DNA level and 93.5% at the amino acid level were found for these species. For exon 11, the lowest homology (70%), as found in mouse and the highest in marmoset (93%), whereas the amino acid sequence conservation ranged from 82.5 to 100%. All codons involved in CF mutations are highly conserved throughout evolution.  相似文献   

15.
A mutational analysis of three co-variant pairs of residues, located at the surface of a single-chain fragment, variable (scFv), remote from the antigen-binding site, was performed to investigate the tolerance of these positions to amino acid changes. The replacements consisted of the elimination or addition of charges, or in their replacement by a charge of opposite sign. As measured by Biacore, antigen-binding kinetics and specificity were essentially unaffected by the mutations. The purified scFvs remained mostly 100% active for 14 h, and their sensitivity to guanidinium-chloride denaturation was similar. These observations indicate that the mutations did not affect antigen-binding properties and that protein folding was conserved. However, the various scFvs differed greatly in half-life in periplasmic extracts (<4 h to >16 h at 25 degrees C). The deleterious effect on half-life produced by single mutations could be reversed by introducing a second mutation that restores the natural combination of amino acids in the co-variant pair, indicating that the consequence of charge modifications at these locations depends on the sequence context. We propose that the differences in half-life result from differences in aggregation propensities with other periplasmic proteins, related to the presence of charged patches at the surface of the scFvs. The practical implication is that changes in surface charge may drastically affect the level of active molecules in complex protein mixtures, a potentially important consideration in engineering scFvs for biotechnological or medical purposes.  相似文献   

16.
A resistance-breaking strain of tobacco mosaic virus (TMV), Ltb1, is able to multiply in tomatoes with the Tm-2 gene, unlike its parent strain, L. Nucleotide sequence analysis of Ltb1 RNA revealed two amino acid changes in the 30-kD protein: from Cys68 to Phe and from Glu133 to Lys (from L to Ltb1). Strains with these two changes generated in vitro multiplied in tomatoes with the Tm-2 gene and induced essentially the same symptoms as those caused by Ltb1. Strains with either one of the two changes did not overcome the resistance as efficiently as Ltb1, although increased levels of multiplication were observed compared with the L strain. Results showed that both mutations are involved in the resistance-breaking property of Ltb1. Sequence analysis indicated that another resistance-breaking strain and its parent strain had two amino acid changes in the 30-kD protein: from Glu52 to Lys and from Glu133 to Lys. The fact that the amino acid changes occurred in or near the well conserved regions in the 30-kD protein suggests that the mechanism of Tm-2 resistance may be closely related to the fundamental function of the 30-kD protein, presumably in cell-to-cell movement.  相似文献   

17.
We report 31 point mutations in the factor IX gene and explore the relationship between the level of evolutionary conservation of an amino acid and the probability of a mutation causing hemophilia B. From our total sample of 125 hemophiliacs and from those reported by others, we identify 95 independent missense mutations, 94 of which occur at amino acids that are evolutionarily conserved in the available mammalian factor IX sequences. The likelihood of a missense mutation causing hemophilia B depends on whether the residue is also conserved in the factor IX-related proteases: factor VII, factor X, and protein C. Most of the possible missense mutations in generically conserved residues (i.e., those conserved in factor IX and in all the related proteases) should cause disease. In contrast, missense mutations in factor IX-specific residues (i.e., those conserved in human, cow, dog, and mouse factor IX but not in the related proteases) are sixfold less likely to cause disease. Missense mutations at nonconserved residues are 33-fold less likely to cause disease. At least three models are compatible with these observations. A comparison of sequence alignments from four and nine species of factor IX and an examination of the missense mutations occurring at CpG residues suggest a model in which most residues fall on opposite ends of a spectrum. In about 40% of residues, virtually any missense mutation in a minority of the residues will cause disease, while virtually no missense mutations will cause disease in most of the remaining residues. Thus, many of the residues in factor IX are spacers; that is, the main chains are presumably necessary to keep other amino acid interactions in register, but the nature of the side chain is unimportant.  相似文献   

18.
Cytochrome cbb(3) oxidase is a member of the heme-copper oxidase superfamily that catalyses the reduction of molecular oxygen to the water and conserves the liberated energy in the form of a proton gradient. Comparison of the amino acid sequences of subunit I from different classes of heme-copper oxidases showed that transmembrane helix VIII and the loop between transmembrane helices IX and X contain five highly conserved polar residues; Ser333, Ser340, Thr350, Asn390 and Thr394. To determine the relationship between these conserved amino acids and the activity and assembly of the cbb(3) oxidase in Rhodobacter capsulatus, each of these five conserved amino acids was substituted for alanine by site-directed mutagenesis. The effects of these mutations on catalytic activity were determined using a NADI plate assay and by measurements of the rate of oxygen consumption. The consequence of these mutations for the structural integrity of the cbb(3) oxidase was determined by SDS-PAGE analysis of chromatophore membranes followed by TMBZ staining. The results indicate that the Asn390Ala mutation led to a complete loss of enzyme activity and that the Ser333Ala mutation decreased the activity significantly. The remaining mutants cause a partial loss of catalytic activity. All of the mutant enzymes, except Asn390Ala, were apparently correctly assembled and stable in the membrane of the R. capsulatus.  相似文献   

19.
The sequence of 10 amino acids (ICSDKTGTLT357) at the site of phosphorylation of the rabbit fast twitch muscle Ca2+-ATPase is highly conserved in the family of cation-transporting ATPases. We changed each of the residues flanking Asp351, Lys352, and Thr353 to an amino acid differing in size or polarity and assayed the mutant for Ca2+ transport activity and autophosphorylation with ATP or P1. We found that conservative changes (Ile----Leu, Thr----Ser, Gly----Ala) or the alteration of Cys349 to alanine did not destroy Ca2+ transport activity or phosphoenzyme formation, whereas nonconservative changes (Ile----Thr, Leu----Ser) did disrupt function. These results indicate that very conservative changes in the amino acids flanking Asp351, Lys352, and Thr353 can be accommodated. A number of mutations were also introduced into amino acids predicted to be involved in nucleotide binding, in particular those in the conserved sequences KGAPE519, RDAGIRVIMITGDNK629, and KK713. Our results indicate that amino acids KGAPE519, Arg615, Gly618, Arg620, and Lys712-Lys713 are not essential for nucleotide binding, although changes to Lys515 diminished Ca2+ transport activity but not phosphoenzyme formation. Changes of Gly626 and Asp627 abolished phosphoenzyme formation with both ATP and Pi, indicating that these residues may contribute to the conformation of the catalytic center.  相似文献   

20.
The vesicular acetylcholine transporter (VAChT) contains six conserved sequence motifs that are rich in proline and glycine. Because these residues can have special roles in the conformation of polypeptide backbone, the motifs might have special roles in conformational changes during transport. Using published bioinformatics insights, the amino acid sequences of the 12 putative, helical, transmembrane segments of wild-type and mutant VAChTs were analyzed for propensity to form non-alpha-helical conformations and molecular notches. Many instances were found. In particular, high propensity for kinks and notches are robustly predicted for motifs D2, C and C'. Mutations in these motifs either increase or decrease Vmax for transport, but they rarely affect the equilibrium dissociation constants for ACh and the allosteric inhibitor, vesamicol. The near absence of equilibrium effects implies that the mutations do not alter the backbone conformation. In contrast, the Vmax effects demonstrate that the mutations alter the difficulty of a major conformational change in transport. Interestingly, mutation of an alanine to a glycine residue in motif C significantly increases the rates for reorientation across the membrane. These latter rates are deduced from the kinetics model of the transport cycle. This mutation is also predicted to produce a more flexible kink and tighter tandem notches than are present in wild-type. For the full set of mutations, faster reorientation rates correlate with greater predicted propensity for kinks and notches. The results of the study argue that conserved motifs mediate conformational changes in the VAChT backbone during transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号