首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Min KJ  Cho KH  Kwon TK 《Cellular signalling》2012,24(6):1215-1221
Macrophages take up oxidized low density lipoprotein (oxLDL) after being exposed to it in the blood vessels. oxLDL transforms macrophages into foam cells, which are a hallmark of atherosclerosis. The effects that oxLDL have on the inflammatory responses of foam cells are not clear. Here, we investigated how oxLDL modulates lipopolysaccharide (LPS)-induced inflammatory mediators in RAW 264.7 murine macrophages. Our results showed that oxLDL dramatically induced HO-1 expression, but did not increase pro-inflammatory mediators such as interleukin-1β, tumor necrosis factor-α, iNOS, and monocyte chemoattractant protein (MCP)-1. In RAW 264.7 macrophages, oxLDL markedly inhibited LPS-induced inflammatory mediators such as inducible nitric oxide synthase (iNOS), IL-1β, IL-6, granulocyte macrophage colony-stimulating factor and stromal cell-derived factor-1. Interestingly, however, the down-regulation of HO-1 by siRNA did not recover the inhibition of LPS-induced expression and/or the secretion of inflammatory mediators. oxLDL blocked LPS-induced NF-κB nuclear translocation by inhibiting inhibitory κB (IκB) degradation. Taken together, our results suggest that oxLDL could modulate LPS-induced inflammatory responses by inhibiting NF-κB signaling independently of HO-1 expression.  相似文献   

2.
Lysosomal acid lipase (LAL), the only lysosomal enzyme involved in the hydrolysis of LDL-cholesteryl esters, is a key regulator of cellular cholesterol and fatty acid homeostasis and its deficiency contributes to the pathophysiology of various diseases. In this study, we questioned whether oxidized or glycated LDL, a common occurrence in atherosclerosis and diabetes, affect the activity and expression of LAL in vascular endothelial cells (EC) and smooth muscle cells (SMC). LAL activity and expression were assayed in cultured human EC and SMC exposed to oxidized LDL (oxLDL), (±)9-hydroxyoctadecadienoic acid-cholesteryl ester (HODE), glycated LDL (gLDL), or native LDL (nLDL) as control, in the presence or absence of LXR or PPAR-gamma agonists. We found that LAL activity and expression were significantly down regulated by oxLDL and HODE in EC, and by gLDL in SMC. The LXR agonist T0901317 reversed the decreased LAL expression in modified LDL- or HODE-exposed EC (P < 0.001) and in gLDL-exposed SMC, whereas PPAR-gamma agonist rosiglitazone induced a low effect only in EC. In conclusion, modified LDL down regulates LAL expression in human EC and SMC by a process involving the LXR signaling pathway. This is the first demonstration that modified LDL modulate LAL expression, in a cell specific manner.  相似文献   

3.
4.
5.
Inhibition of pro-inflammatory functions of microglia has been considered a promising strategy to prevent pathogenic events in the central nervous system under neurodegenerative conditions. Here we examined potential inhibitory effects of nuclear receptor ligands on lipopolysaccharide (LPS)-induced inflammatory responses in microglial BV-2 cells. We demonstrate that a vitamin D receptor agonist 1,25-dihydroxyvitamin D3 (VD3) and a retinoid X receptor agonist HX630 affect LPS-induced expression of pro-inflammatory factors. Specifically, both VD3 and HX630 inhibited expression of mRNAs encoding inducible nitric oxide synthase (iNOS) and IL-6, whereas expression of IL-1β mRNA was inhibited only by VD3. The inhibitory effect of VD3 and HX630 on expression of iNOS and IL-6 mRNAs was additive. Effect of VD3 and HX630 was also observed for inhibition of iNOS protein expression and nitric oxide production. Moreover, VD3 and HX630 inhibited LPS-induced activation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor κB (NF-κB). PD98059, an inhibitor of ERK kinase, attenuated LPS-induced nuclear translocation of NF-κB and induction of mRNAs for iNOS, IL-1β and IL-6. These results indicate that VD3 can inhibit production of several pro-inflammatory molecules from microglia, and that suppression of ERK activation is at least in part involved in the anti-inflammatory effect of VD3.  相似文献   

6.
7.
Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis.  相似文献   

8.
Oxidized Low-Density Lipoprotein Induces Neuronal Death   总被引:13,自引:0,他引:13  
Low-density lipoprotein (LDL) exists within the brain and is highly vulnerable to oxidative modifications. Once formed, oxidized LDL (oxLDL) is capable of eliciting cytotoxicity, differentiation, and inflammation in nonneuronal cells. Although oxLDL has been studied primarily for its role in the development of atherosclerosis, recent studies have identified a possible role for it in neurological disorders associated with oxidative stress. In the present study application of oxLDL, but not LDL, resulted in a dose- and time-dependent death of cultured rat embryonic neurons. Studies using pharmacological inhibitors implicate the involvement of calcium, reactive oxygen species, and caspases in oxLDL-induced neuronal death. Coapplication of oxLDL with either amyloid beta-peptide or glutamate, agents that enhance oxidative stress, resulted in increased neuronal death. Taken together, these data demonstrate that oxLDL induces neuronal death and implicate a possible role for oxLDL in conditions associated with increased levels of reactive oxygen species, including Alzheimer's disease.  相似文献   

9.
10.
Secreted phospholipase A2 group X (sPLA(2)-X) is one of the most potent enzymes of the phospholipase A(2) lipolytic enzyme superfamily. Its high catalytic activity toward phosphatidylcholine (PC), the major phospholipid of cell membranes and low-density lipoproteins (LDL), has implicated sPLA(2)-X in chronic inflammatory conditions such as atherogenesis. We studied the role of sPLA(2)-X enzyme activity in vitro and in vivo, by generating sPLA(2)-X-overexpressing macrophages and transgenic macrophage-specific sPLA(2)-X mice. Our results show that sPLA(2)-X expression inhibits macrophage activation and inflammatory responses upon stimulation, characterized by reduced cell adhesion and nitric oxide production, a decrease in tumor necrosis factor (TNF), and an increase in interleukin (IL)-10. These effects were mediated by an increase in IL-6, and enhanced production of prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta12,14-prostaglandin J(2) (PGJ(2)). Moreover, we found that overexpression of active sPLA(2)-X in macrophages strongly increases foam cell formation upon incubation with native LDL but also oxidized LDL (oxLDL), which is mediated by enhanced expression of scavenger receptor CD36. Transgenic sPLA(2)-X mice died neonatally because of severe lung pathology characterized by interstitial pneumonia with massive granulocyte and surfactant-laden macrophage infiltration. We conclude that overexpression of the active sPLA(2)-X enzyme results in enhanced foam cell formation but reduced activation and inflammatory responses in macrophages in vitro. Interestingly, enhanced sPLA(2)-X activity in macrophages in vivo leads to fatal pulmonary defects, suggesting a crucial role for sPLA(2)-X in inflammatory lung disease.  相似文献   

11.
Yang K  He YS  Wang XQ  Lu L  Chen QJ  Liu J  Sun Z  Shen WF 《FEBS letters》2011,585(6):854-860
Atherosclerosis is an inflammatory process due to oxidized low-density lipoprotein (oxLDL) accumulation in macrophages. We investigated the involvement of microRNAs in oxLDL accumulation and inflammatory response in macrophages. The expression of miR-146a decreases under oxLDL stimulation. MiR-146a significantly reduces intracellular LDL cholesterol content and secretion of interleukin 6, interleukin 8, chemokine (C-C motif) ligand 2 and matrix metallopeptidase 9. Toll-like receptor 4 (TLR4) is a relevant target of miR-146a, and miR-146a inhibits the activation of TLR4-dependent intracellular signaling pathways involved in cytoskeleton rearrangement, lipid uptake, and inflammatory cytokine secretion. These results indicate that miR-146a contributes to the regulation of both oxLDL accumulation and inflammatory response by negatively regulating TLR4 and thereby inhibiting the activation of TLR4-dependent signaling pathways. Over-expression of miR-146a may be useful in the prevention and treatment of atherosclerosis.  相似文献   

12.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

13.
Uptake of modified lipoproteins by macrophages results in the formation of foam cells. We investigated how foam cell formation affects the inflammatory response of macrophages. Murine bone marrow-derived macrophages were treated with oxidized LDL (oxLDL) to induce foam cell formation. Subsequently, the foam cells were activated with lipopolysaccharide (LPS), and the expression of lipid metabolism and inflammatory genes was analyzed. Furthermore, gene expression profiles of foam cells were analyzed using a microarray. We found that prior exposure to oxLDL resulted in enhanced LPS-induced tumor necrosis factor (TNF) and interleukin-6 (IL-6) gene expression, whereas the expression of the anti-inflammatory cytokine IL-10 and interferon-beta was decreased in foam cells. Also, LPS-induced cytokine secretion of TNF, IL-6, and IL-12 was enhanced, whereas secretion of IL-10 was strongly reduced after oxLDL preincubation. Microarray experiments showed that the overall inflammatory response induced by LPS was enhanced by oxLDL loading of the macrophages. Moreover, oxLDL loading was shown to result in increased nuclear factor-kappaB activation. In conclusion, our experiments show that the inflammatory response to LPS is enhanced by loading of macrophages with oxLDL. These data demonstrate that foam cell formation may augment the inflammatory response of macrophages during atherogenesis, possibly in an IL-10-dependent manner.  相似文献   

14.
15.
Atherogenic diet (AD) decreased bone density and increased serum cholesterol level in male mice, implying that cholesterol participates in bone loss. The aim of the present study was to identify the cells responsible for bone loss and evaluate the involved mechanism. AD resulted in increased number and surface of osteoclasts (OCs) with in vivo tartrate-resistant acid phosphatase (TRAP) staining, suggesting a critical role of OCs in cholesterol-induced bone loss. In vitro, cholesterol loading by oxidized low-density lipoprotein (oxLDL) increased the size and number of OCs as well as bone resorption activity, suggesting that cholesterol loading affects the number and activity of OCs. In contrast, cholesterol depletion by simvastatin decreased osteoclastogenesis and bone resorption. oxLDL stimulated osteoblasts (OBs) to increase expression of receptor activator of nuclear factor kappa-Β ligand (RANKL), resulting in increased OC formation when OBs were co-cultured with bone marrow derived macrophages. oxLDL increased expression of CD36 and liver X receptors (LXRα) in OCs as well as low density lipoprotein receptor (LDLR) and LXRα in OBs. These results suggest that CD36 and LXRα mediate the effect of oxLDL in OCs, whereas LDLR and LXRα mediate the effect of oxLDL in OBs. These findings demonstrate cholesterol-induced bone loss with increasing number and activity of OCs in mice, suggesting another harmful effect of cholesterol, a major cause of atherosclerosis.  相似文献   

16.
Liver X receptors (LXRs) are nuclear receptors that are central regulators of cholesterol homeostasis, and synthetic LXR agonists have shown promise as promoters of reverse cholesterol transport and anti-inflammatory agents. Here, we present three X-ray structures of three different agonists bound to the ligand binding domain of LXRα. These compounds are GW3965, F3methylAA, and a benzisoxazole urea, and we show that these diverse chemical scaffolds address common structural themes, leading to high binding affinity for LXR. Our structures show the LXRα ligand binding domain in its homodimeric form, an arrangement previously thought to be stereochemically difficult. A comparison with existing structures of the LXRβ homodimer and LXRα:RXR (retinoid X receptor) heterodimers explains differences in dimer affinity and leads us to propose a model for allosteric activation in nuclear receptor dimers, in which an unactivated RXR partner provides an inhibitory tail wrap to the cofactor binding pocket of LXR.  相似文献   

17.
Previous studies have shown that oxidation of low-density lipoprotein (oxLDL) results in its recognition by scavenger receptors on macrophages. Whereas blockage of lysyl residues on apoB-100 of oxLDL by lipid peroxidation products appears to be critical for recognition by the scavenger receptor class A (SR-A), modification of the lipid moiety has been suggested to be responsible for recognition by the scavenger class B receptor, CD36. We studied the recognition by scavenger receptors of oxidized LDL in which lysyl residues are blocked prior to oxidation through methylation [ox(m)LDL]. This permits us to minimize any contribution of modified apoB-100 to the recognition of oxLDL, but does not disrupt the native configuration of lipids in the particle. We found that ox(m)LDL was recognized by receptors on mouse peritoneal macrophages (MPM) almost as well as oxLDL. Ox(m)LDL was recognized by CD36-transfected cells but not by SR-A-transfected cells. Oxidized phospholipids (oxPC) transferred from oxLDL or directly from oxPC to LDL, conveyed recognition by CD36-transfected cells, confirming that CD36 recognized unbound oxidized phospholipids in ox(m)LDL. Collectively, these results suggest that oxPC not adducted to apoB within the intact oxLDL particle are recognized by the macrophage scavenger receptor CD36, that these lipids are not recognized by SR-A, and that they can transfer from oxidized to unoxidized LDL and induce CD36 recognition.  相似文献   

18.
AimsDyslipidemia and oxidative stress are commonly present in patients during maintenance dialysis treatment. However, the significance of oxidized LDL (oxLDL) as a marker of oxidative stress in uremia is still unresolved. The aim of this study was to establish the role of oxLDL and oxLDL/LDL ratio as markers of lipoprotein abnormalities and oxidative stress in the dialyzed patients.Main methodsPlasma oxLDL level was measured by ELISA, and oxLDL/LDL ratio was calculated in 106 dialyzed patients and 20 controls. The linkages between oxLDL, oxLDL/LDL ratio and lipid profile and oxidative stress markers malondialdehyde (MDA) and Cu/Zn superoxide dismutase (Cu/Zn SOD) levels were also analyzed.Key findingsOxLDL levels and oxLDL/LDL ratio were similar in hemodialyzed patients and controls, whereas these parameters were lower in peritoneally dialyzed patients when compared to healthy individuals. In contrast, both MDA and Cu/Zn SOD levels were significantly higher in uremics than in controls. oxLDL and oxLDL/LDL ratio positively correlated with lipid profile (except of HDL), whereas there were no positive associations between these parameters and both MDA and Cu/Zn SOD. Multiple regression analysis confirmed that increased oxLDL/HDL and TC/HDL ratios and total cholesterol levels are the parameters which independently predicted oxLDL in dialyzed patients. In the case of oxLDL/LDL ratio, the independent variables were oxLDL/HDL ratio, total cholesterol and HDL levels.SignificanceoxLDL levels and oxLDL/LDL ratio seem to be the markers of lipoprotein abnormalities rather than the markers of oxidative stress in the population of dialyzed patients.  相似文献   

19.
Activated cholesterol-laden macrophages in atherosclerotic lesions are believed to influence the progression of this disease. The induction of nitric oxide synthase (iNOS) activity was investigated in control and cholesterol-laden J774 macrophages, obtained by pre-incubation with oxidized or acetylated low density lipoproteins (oxLDL, acLDL). Loading with oxLDL caused a small induction of NOS activity in unstimulated cells, as indicated by nitrite and citrulline accumulation in the supernatant. However, it suppressed the iNOS activity resulting from stimulation of the cells with lipopolysaccharide with or without interferon-gamma. AcLDL had no inhibitory effect, indicating that cholesterol accumulation as such was not responsible. Since the induction of NOS in macrophages is inhibited by glucocorticoids, the possibility that a glucocorticoid-like factor, formed during oxidation of LDL, may cause the inhibition, was investigated. However, addition of the glucocorticoid receptor antagonist mifepristone did not prevent the oxLDL-dependent NOS inhibition, indicating that the glucocorticoid receptor is not involved in the suppressive effect of oxLDL.  相似文献   

20.
Oxidized low density lipoprotein (LDL) has an important proinflammatory role in atherogenesis. In this study, we investigated the ability of oxidized LDL (oxLDL) and its phospholipid components to induce lipid body formation in leukocytes. Incubation of mouse peritoneal macrophages with oxidized, but not with native LDL led to lipid body formation within 1 h. This was blocked by platelet-activating factor (PAF) receptor antagonists or by preincubation of oxLDL with rPAF acetylhydrolase. HPLC fractions of phospholipids purified from oxLDL induced calcium flux in neutrophils as well as lipid body formation in macrophages. Injection of the bioactive phospholipid fractions or butanoyl and butenoyl PAF, a phospholipid previously shown to be present in oxLDL, into the pleural cavity of mice induced lipid body formation in leukocytes recovered after 3 h. The 5-lipoxygenase and cyclooxygenase-2 colocalized within lipid bodies formed after stimulation with oxLDL, bioactive phospholipid fractions, or butanoyl and butenoyl PAF. Lipid body formation was inhibited by 5-lipoxygenase antagonists, but not by cyclooxygenase-2 inhibitors. Azelaoyl-phosphatidylcholine, a peroxisome proliferator-activated receptor-gamma agonist in oxLDL phospholipid fractions, induced formation of lipid bodies at late time points (6 h) and synergized with suboptimal concentrations of oxLDL. We conclude that lipid body formation is an important proinflammatory effect of oxLDL and that PAF-like phospholipids and peroxisome proliferator-activated receptor-gamma agonists generated during LDL oxidation are important mediators in this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号