首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 915 毫秒
1.
FLOWERING LOCUS T (FT), a major effect gene, regulates flowering time in Arabidopsis. We analyzed evolutionary changes distinguishing two FT homeologous loci in B. rapa, described genetic variation in homologs isolated and reported expression pattern of FT in B. juncea. Synteny analysis confirmed presence of two FT genomic copies in B. rapa ssp. pekinensis and resolved pre-existing anomalies regarding copy number in “AA” genome. Synteny analysis of B. rapa homeologous regions CR1 (129 kb) and CR2 (232 kb) revealed differential gene fractionation and wide-spread re-arrangements. Seven genomic DNA (gDNA) variants (2.1–2.2 kb) and 10 complementary DNA (cDNA) variants (528 bp) were isolated from 6 Brassica species. The gDNA variants shared 72–99 % similarity within Brassica and 58–60 % between Arabidopsis and Brassica. FT cDNA variants shared 92–100 % similarity within Brassica and 87 % between Arabidopsis and Brassica. Phylogenetic analysis of FT gDNA, cDNA and protein sequences revealed two major clades, differentiating homologs derived from species containing shared “BB” and “CC” genomes. Phylogram based on Brassica FT gDNA differentiated homeologs derived from AA-LF (Least fractioned) and AA-MF1 (Moderately fractioned) sub-genomes. Analysis of FT expression pattern in B. juncea revealed increasing levels correlating with attainment of physiological maturity; highest levels were detected in older leaves implying conservation in spatio-temporal expression pattern vis-à-vis Arabidopsis. In conclusion, our study reveals that polyploidy in Brassicas resulted in expansion of FT gene copies with homologs charting independent evolutionary course through accumulation of mutations. However, expression domains of FT remained conserved across Brassicaceae to preserve the critical function of FT in controlling flowering time.  相似文献   

2.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

3.
Edwardsiella tarda is one of the leading fish pathogens for the aquaculture industry. To realize efficient disease control of edwardsiellosis, a predictive model for E. tarda in seawater was developed. The modified logistic model was used to regress the growth curves of E. tarda JN at five different temperatures (range from 10 to 30 °C) and four organic nutrient concentrations (range from 5 to 40 mg l?1 measured by chemical oxygen demand (COD)). The modeling effects of temperature and COD on the specific growth rate (μ) were developed by square-root model and saturation-growth rate model, respectively. The growth model was validated in turbot aquaculture tanks by estimating the dynamics of inoculated E. tarda. The accurate feeding of probiotic Bacillus pumilus strain H2 was calculated based on the estimation of E. tarda. Results showed that the logistic model produced a good fit to the growth curves of E. tarda JN (average R2?=?0.962). The overall predictions based on above models agreed well with the growth curve of E. tarda JN observed by plate counting in the validation tests (average Af?=?1.16; average Bf?=?1.32). The use of predicted amount of B. pumilus (5.66 log CFU ml?1) successfully prevent the deterioration of disease for turbot with 13.3% mortality rate in a recirculating aquaculture system (RAS), while the feeding of 0 and 3.0 log CFU ml?1 of B. pumilus resulted in 53.7 and 75.3% of turbot mortality rate, respectively. In conclusion, accurate estimation of E. tarda realized the precise feeding of probiotics, which successfully prevent the rapid progression of the edwardsiellosis.  相似文献   

4.

Objective

To improve the production of trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) from linoleic acid in recombinant Yarrowia lipolytica.

Results

Cells of the yeast were permeabilized by freeze/thawing. The optimal conditions for t10,c12-CLA production by the permeabilized cells were at 28 °C, pH 7, 200 rpm with 1.5 g sodium acetate l?1, 100 g wet cells l?1, and 25 g LA l?1. Under these conditions, the permeabilized cells produced 15.6 g t10,c12-CLA l?1 after 40 h, with a conversion yield of 62 %. The permeabilized cells could be used repeatedly for three cycles, with the t10,c12-CLA extracellular production remaining above 10 g l?1.

Conclusion

Synthesis of t10,c12-CLA was achieved using a novel method, and the production reported in this work is the highest value reported to date.
  相似文献   

5.
The present study is aimed to identify genetic variability between two species of Amaranthus viz., A. caudatus and A. hybridus subsp. cruentus, two economically important species, cultivated mainly for grain production. Karyomorphological studies in Amaranthus are scarce, probably due to higher number of small sized chromosomes. Karyomorphological studies were conducted using mitotic squash preparation of young healthy root tips. Karyological parameters and karyotypic formula were established using various software programs and tabulated the karyomorphometric and asymmetry indices viz., Disparity index, Variation coefficient, Total forma percentage, Karyotype asymmetry index, Syi index, Rec index, Interchromosomal and Intrachromosomal asymmetry index and Degree of asymmetry of karyotypes. The mitotic chromosome number observed for A. caudatus was 2n = 32 with a gametic number n = 16 and A. hybridus subsp. cruentus was 2n = 34 with a gametic number n = 17. In A. caudatus the chromosome length during somatic metaphase ranged from 0.8698 to 1.7722 μm with a total length of 39.1412 μm. In A. hybridus subsp. cruentus the length of chromosome ranged from 0.7756 to 1.9421 μm with a total length of 44.9922 μm. Various karyomorphometry and asymmetry indices analyzed revealed the extend of interspecific variation and their evolutionary status.  相似文献   

6.
The objective of this study comprises of developing novel co-spray dried rifampicin phospholipid lipospheres (SDRPL) to investigate its influence on rifampicin solubility and oral bioavailability. Solid-state techniques were employed to characterize the liposphere formulation. SDRPL solubility was determined in distilled water. BACTEC 460TB System was employed to evaluate SDRPL antimycobacterial activity. The oral bioavailability of the lipospheres was evaluated in Sprague Dawley rats. Lipospheres exhibited amorphous, smooth spherical morphology with a significant increase (p?<?0.001) in solubility of SDRPL (2:1), 350.9?±?23 versus 105.1?±?12 μg/ml and SDRPL (1:1) 306.4?±?20 versus 105.1?±?12 μg/ml in comparison to rifampicin (RMP). SDRPL exhibited enhanced activity against Mycobacterium tuberculosis, H37Rv strain, with over twofolds less minimum inhibitory concentration (MIC) than the free drug. Lipospheres exhibited higher peak plasma concentration (109.92?±?25 versus 54.31?±?18 μg/ml), faster T max (two versus four hours), and enhanced area under the curve (AUC0–∞) (406.92?±?18 versus 147.72?±?15 μg h/L) in comparison to pure RMP. Thus, SDRPL represents a promising carrier system exhibiting enhanced antimycobacterial activity and oral bioavailability of rifampicin.  相似文献   

7.
In spite of the recent advancements in oncology, the overall survival rate for pancreatic cancer has not improved over the last five decades. Eucalypts have been linked with cytotoxic and anticancer properties in various studies; however, there is very little scientific evidence that supports the direct role of eucalypts in the treatment of pancreatic cancer. This study assessed the anticancer properties of aqueous and ethanolic extracts of four Eucalyptus species using an MTT assay. The most promising extracts were further evaluated using a CCK-8 assay. Apoptotic studies were performed using a caspase 3/7 assay in MIA PaCa-2 cells. The aqueous extract of Eucalyptus microcorys leaf and the ethanolic extract of Eucalyptus microcorys fruit inhibited the growth of glioblastoma, neuroblastoma, lung and pancreatic cancer cells by more than 80% at 100 μg/mL. The E. microcorys and Eucalyptus saligna extracts showed lower GI50 values than the ethanolic Eucalyptus robusta extract in MIA PaCa-2 cells. Aqueous E. microcorys leaf and fruit extracts at 100 μg/mL exerted significantly higher cell growth inhibition in MIA PaCa-2 cells than other extracts (p < 0.05). Statistically similar IC50 values (p > 0.05) were observed in aqueous E. microcorys leaf (86.05 ± 4.75 μg/mL) and fruit (64.66 ± 15.97 μg/mL) and ethanolic E. microcorys leaf (79.30 ± 29.45 μg/mL) extracts in MIA PaCa-2 cells using the CCK-8 assay. Caspase 3/7-mediated apoptosis and morphological changes of cells were also witnessed in MIA PaCa-2 cells after 24 h of treatment with the extracts. This study highlighted the significance of E. microcorys as an important source of phytochemicals with efficacy against pancreatic cancer cells. Further studies are warranted to purify and structurally identify individual compounds and elucidate their mechanisms of action for the development of more potent and specific chemotherapeutic agents for pancreatic cancer.  相似文献   

8.
Public concern for food safety and environmental issues and the increase in fungicide-resistant pathogen have enhanced the interest in developing alternative methods to fungicides to control postharvest fruit decay. In this study, a bacterial strain isolated from stale potato vermicelli was identified as Bacillus pumilus HN-10 based on morphological characteristics and 16S rRNA gene sequence analysis. Furthermore, two novel cationic antifungal peptides named P-1 and P-2 were purified from B. pumilus HN-10 using macroporous adsorbent resin AB-8, Sephadex G-100 chromatography, and reversed-phase high-performance liquid chromatography. The primary structure of P-1 and P-2, which were proved to be novel antifungal peptides by BLAST search in NCBI database, was PLSSPATLNSR and GGSGGGSSGGSIGGR with a molecular weight of 1142.28 and 1149.14 Da, respectively, as indicated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Both P-1 and P-2 exhibited strong antifungal activity against Trichothecium roseum with minimum inhibitory concentrations starting from 1 μg/mL. The two novel antifungal peptides were stable below 80 °C for 2 h, but lost their activity in 15 min at 121 °C. In addition, they were resistant to the proteolytic action of pepsin, trypsin, and papain, and stable within a wide range of pH (2.0–12.0). These results showed that P-1 and P-2 are novel cationic antifungal peptides with specific activity against T. roseum.  相似文献   

9.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

10.
This paper identifies the potential molecular markers predicting the impact of nTiO2 on plants and explores the new statistical correlations between the biomarkers and growth parameters. The quantitative mRNA expression of the three genes involved in DNA mismatch repair (MLH1) and cell division (PCNA1 and PCNA2) in Zea mays and Triticum aestivum seedlings were related to the growth parameters measured in response to five nTiO2 treatments. The results indicated that the higher concentrations were harmless to Z. mays but not to T. aestivum. nTiO2 treatments increased the total protein levels in both species and significantly inhibited the percentage of DPPH radical scavenging in Z. mays compared with T. aestivum seedlings. The exposure to both 50 μg/ml and 30 μg/ml concentrations of nTiO2 significantly induced the expression of MLH1 and PCNA1 genes in both species; however, the exposure to 30 μg/ml of nTiO2 also significantly induced the expression of PCNA2 genes in T. aestivum. The exposure to 50, 70 and 140 μg/ml significantly inhibited the expression of PCNA2 in both species, while 70 and 140 μg/ml repressed the expression of MLH1 and PCNA1 in the seedlings of Z. mays. The induction and repression of the expression of the three genes were correlated with some growth parameters and biological indices in both species. This key finding suggests that the above genes may play a vital role in mediating plant stress response to nTiO2 and could be used as sensitive molecular biomarkers indicative of the oxidative stress of nTiO2 exposure.  相似文献   

11.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

12.
13.
Maggot debridement therapy (MDT) consists on the intentional and controlled application of sterilized larvae of the order Diptera on necrotic skin lesions with the purpose of cleaning necrotic tissue and removing pathogenic bacteria. During MDT, a marked antimicrobial activity has been reported in literature specially associated with antibacterial substances from Lucilia sericata (Meigen); however, regarding Cochliomyia macellaria (Fabricius), little is known. This study aimed to evaluate in vitro inhibition of bacterial growth of Pseudomonas aeruginosa and Staphylococcus aureus in contact with excretions and secretions (ES) from C. macellaria larvae. Larval ES were extracted in sterile distilled water and divided in three groups: ES, containing 400 μL of autoclaved ES; ES+BAC, containing 400 μL of autoclaved ES+0.5-μL bacterial inoculum; and CONT-BAC, containing 400 μL of sterile distilled water +0.5 μL of bacterial inoculum. Aliquots of each experimental group were plated by spreading onto Petri dishes. Seedings were made at 0, 1, 2, 4, and 12 h after the extraction of ES. In ES+BAC groups, inhibition of S. aureus was verified between times 1 and 2 h and P. aeruginosa was inhibited between 0 and 4 h. There was no growth observed in any ES group. In the CONT-BAC groups, the number of colonies from time 4 h became countless for S. aureus and decreased for P. aeruginosa. As reported in the literature, we note here that ES have excellent bactericidal activity for both gram-positive and gram-negative bacteria, and this study shows for the first time the action of the bactericidal activity of exosecretions of C. macellaria against S. aureus and P. aeruginosa.  相似文献   

14.
Stilbenes, including trans-resveratrol (3,4′,5-trihydroxy-trans-stilbene), are known to exert beneficial health effects and contribute to plant biotic stress resistance. Much remains to be discovered about the cell signaling pathways regulating stilbene biosynthesis. It has recently been shown that overexpression of the calcium-dependent protein kinase VaCPK20 gene considerably increased t-resveratrol accumulation in cell cultures of Vitis amurensis. In this study, we analyzed the involvement of other CDPK family members, VaCPK1 and VaCPK26, on stilbene synthesis and biomass production by cell cultures of V. amurensis. We showed that overexpression of the VaCPK1 and 26 genes induced production of stilbenes by 1.7–4.6-fold (for VaCPK1) and by 2.5–6.2-fold (for VaCPK26) in several independently established cell lines compared to the empty vector-transformed control. Using HPLC-UV-MS, we detected five stilbenes in the grape cells: t-resveratrol diglucoside, t-piceid, t-resveratrol, ε- and δ-viniferin. The VaCPK1- and VaCPK26-transformed calli were capable of producing 1.4–3.1 and 1.8–4.9 mg/l of t-resveratrol, respectively (up to 0.4 for and 0.6 mg/g of dry weight for VaCPK26 and VaCPK1, respectively), while the control line synthesized only 0.5 mg/l of t-resveratrol (0.07 mg/g DW). The up-regulation of t-resveratrol production in the VaCPK1- and VaCPK26-overexpressing grape calli correlated with a significant up-regulation of stilbene synthase (STS) gene expression, especially VaSTS7. The data indicate that VaCPK1 and 26 genes, which are close homologues of VaCPK20, are positive regulators of stilbene biosynthesis in grapevine.  相似文献   

15.
Hybridization between alien and native species is biologically very important and could lead to genetic erosion of native taxa. Solidago × niederederi was discovered over a century ago in Austria and described by Khek as a natural hybrid between the alien (nowadays regarded also as invasive) S. canadensis and native S. virgaurea. Although interspecific hybridization in the genus Solidago is considered to be relatively common, hybrid nature of S. × niederederi has not been independently proven using molecular tools, to date. Because proper identification of the parentage for the hybrid Solidago individuals solely based on morphological features can be misleading, in this paper we report an additive polymorphism pattern expressed in the ITS sequences obtained from individuals representing S. × niederederi, and confirm the previous hypothesis that the parental species of this hybrid are S. canadensis and S. virgaurea. Additionally, based on variability at the cpDNA rpl32-trnL locus, we showed that in natural populations hybridization occurs in both directions.  相似文献   

16.
17.
PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD600, gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.  相似文献   

18.
The role of 4.1 or 8.2 μM meta-topolin (mT) on shoot multiplication, rooting and ex vitro acclimatization of micropropagated Corylus colurna L., a promising non-suckering rootstock for hazelnut (Corylus avellana L.), was examined in comparison to N6-benzyladenine (BA), the most used cytokinin in tissue culture of Corylus spp. The influence of 8.2 μM mT and BA on photosynthetic pigments content and antioxidant enzymes activity, catalase (CAT) and guaiacol peroxidase (POD), in regenerated shoots, and on the preparation of the rootstock for micrografting was also evaluated. The highest shoot multiplication was recorded on medium containing 8.2 μM mT and an overall positive effect of mT on growth and quality of micropropagated shoots was found. The highest chlorophyll a content (1.236 mg g?1 fresh weight, FW) and chlorophyll a/b ratio (2.48), and the lowest total carotenoids content (0.292 mg g?1 FW) and CAT activity (25.8 μmol min?1 mg?1 protein) were detected after 8.2 μM mT application, while no significant differences were found in chlorophyll b content and POD activity between the two cytokinins. The best rhizogenesis response (98% for 4.1 μM and 100% for 8.2 μM mT) and ex vitro acclimatization competence (higher than 78%) were exhibited from shoots multiplied on mT. Furthermore, the multiplication of rootstock on mT allowed obtaining the highest (70%) response of successful micrografting. The present findings provide the first evidence of the successful applicability of mT in C. colurna tissue culture and development of micrografted plantlets.  相似文献   

19.
Because the occurrence of Claviceps in European pastures may have been overlooked to cause serious health problem for grazing animals, we documented the degree of Claviceps contamination in two horse pastures and estimated whether the horses could have ingested a critical quantity of alkaloids. We counted the Claviceps sclerotia and determined alkaloid levels using high performance liquid chromatography with fluorescence detection. Depending on the location, the number of sclerotia varied from 0.09 to 0.19 per square meter (central area) and from 0.23 to 55.8 per square meter (border strips). Alkaloid levels in individual sclerotia also varied in different genera of grasses, ranging from 0.98 ± 0.17 μg/kg in Agrostis sp. to 25.82 ± 9.73 μg/kg in Dactylis sp., equivalent to 0.98 μg/kg and 7.26 mg/kg. Sclerotia from Dactylis contained high levels of ergosine (0.209 % ± 0.100 %) and ergocristine (0.374 % ± 0.070 %). Depending on the localization in pastures, alkaloid levels in forage (dry matter, DM) ranged from 16.1 to 45.4 μg/kg in central areas and from 23.9 to 722 μg/kg in border strips. The amount of alkaloids that a horse could have ingested depended on its daily DM uptake, which was higher in the central areas (5.85 kg/day) than in the border strips (2.73 or 0.78 kg/day). In the central areas, this amount of alkaloids ranged from 94.2 to 265.9 μg/day; and in the border strips, from 65.3 (in 2.73 kg DM/day) to as much as 563.8 μg/day (in 0.78 kg DM/day). All these amounts are higher than the European averages for alkaloids ingested by horses via feedstuffs.  相似文献   

20.
During our search for novel prenyltransferases, a putative gene ATEG_04218 from Aspergillus terreus raised our attention and was therefore amplified from strain DSM 1958 and expressed in Escherichia coli. Biochemical investigations with the purified recombinant protein and different aromatic substrates in the presence of dimethylallyl diphosphate revealed the acceptance of all the tested tryptophan-containing cyclic dipeptides. Structure elucidation of the main enzyme products by NMR and MS analyses confirmed the attachment of the prenyl moiety to C-7 of the indole ring, proving the identification of a cyclic dipeptide C7-prenyltransferase (CdpC7PT). For some substrates, reversely C3- or N1-prenylated derivatives were identified as minor products. In comparison to the known tryptophan-containing cyclic dipeptide C7-prenyltransferase CTrpPT from Aspergillus oryzae, CdpC7PT showed a much higher substrate flexibility. It also accepted cyclo-l-Tyr-l-Tyr as substrate and catalyzed an O-prenylation at the tyrosyl residue, providing the first example from the dimethylallyltryptophan synthase (DMATS) superfamily with an O-prenyltransferase activity towards dipeptides. Furthermore, products with both C7-prenyl at tryptophanyl and O-prenyl at tyrosyl residue were detected in the reaction mixture of cyclo-l-Trp-l-Tyr. Determination of the kinetic parameters proved that (S)-benzodiazepinedione consisting of a tryptophanyl and an anthranilyl moiety was accepted as the best substrate with a K M value of 204.1 μM and a turnover number of 0.125 s?1. Cyclo-l-Tyr-l-Tyr was accepted with a K M value of 1,411.3 μM and a turnover number of 0.012 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号