首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of DNA superhelicity in partitioning of the pSC101 plasmid   总被引:24,自引:0,他引:24  
C A Miller  S L Beaucage  S N Cohen 《Cell》1990,62(1):127-133
Previous work has shown that a cis-acting locus (termed par for partitioning) on the pSC101 plasmid accomplishes its stable inheritance in dividing cell populations. We report here that the DNA of pSC101 derivatives lacking the par region shows a decrease in overall superhelical density as compared with DNA of wild-type pSC101. Chemicals and bacterial mutations that reduce negative DNA supercoiling increase the rate of loss of par plasmids and convert normally stable plasmids that have minimal par region deletions into unstable replicons. topA gene mutations, which increase negative DNA supercoiling, reverse the instability of partition-defective plasmids that utilize the pSC101, p15A, F, or oriC replication systems. Our observations show that the extent of negative supercoiling of plasmid DNA has major effects on the plasmid's inheritance and suggest a mechanism by which the pSC101 par region may exert its stabilizing effects.  相似文献   

2.
Second-site mutations that allow stable inheritance of partition-defective pSC101 plasmids mapped to seven distinct sites in the 5' half of the plasmid repA gene. While the mutations also elevated pSC101 copy number, there was no correlation between copy number increase and plasmid stability. Combinations of mutations enabled pSC101 DNA replication in the absence of integration host factor and also stabilized par-deleted plasmids in cells deficient in DNA gyrase or defective in DnaA binding. Our findings suggest that repA mutations compensate for par deletion by enabling the origin region RepA-DNA-DnaA complex to form under suboptimal conditions. They also provide evidence that this complex has a role in partitioning that is separate from its known ability to promote plasmid DNA replication.  相似文献   

3.
Boundaries of the pSC101 minimal replicon are conditional.   总被引:5,自引:3,他引:2       下载免费PDF全文
The DNA segment essential for plasmid replication commonly is referred to as the core or minimal replicon. We report here that host and plasmid genes and sites external to the core replicon of plasmid pSC101 determine the boundaries and competence of the replicon and also the efficiency of partitioning. Missense mutations in the plasmid-encoded RepA protein or mutation of the Escherichia coli topoisomerase I gene enable autonomous replication of a 310-bp pSC101 DNA fragment that contains only the actual replication origin plus binding sites for RepA and the host-encoded DnaA protein. However, in the absence of a repA or topA mutation, the DNA-bending protein integration host factor (IHF) and either of two cis-acting elements are required. One of these, the partitioning (par) locus, is known to promote negative DNA supercoiling; our data suggest that the effects of the other element, the inverted repeat (IR) sequences that overlap the repA promoter, are mediated through the IR's ability to bind RepA. The concentrations of RepA and DnaA, which interact with each other and with plasmid DNA in the origin region (T. T. Stenzel, T. MacAllister, and D. Bastia, Genes Dev. 5:1453-1463, 1991), also affect both replication and partitioning. Our results, which indicate that the sequence requirements for replication of pSC101 are conditional rather than absolute, compel reassessment of the definition of a core replicon. Additionally, they provide further evidence that the origin region RepA-DnaA-DNA complex initiating replication of pSC101 also mediates the partitioning of pSC101 plasmids at cell division.  相似文献   

4.
Previous work has shown that deletion of the partition (par) locus of plasmid pSC101 results in decreased overall superhelical density of plasmid DNA and concommitant inability of the plasmid to be stably inherited in populations of dividing cells. We report here that the biological effects of par correlate specifically with its ability to generate supercoils in vivo near the origin of pSC101 DNA replication. Using OsO4 reactivity of nucleotides adjoining 20 bp (G-C) tracts introduced into pSC101 DNA to measure local DNA supercoiling, we found that the wild type par locus generates supercoiling near the plasmid's replication origin adequate to convert a (G-C) tract in the region to Z form DNA. A 4 bp deletion that decreases par function, but produces no change in the overall superhelicity of pSC101 DNA as determined by chloroquine/agarose gel analysis, nevertheless reduced (G-C) tract supercoiling sufficiently to eliminate OsO4 reactivity. Mutation of the bacterial topA gene, which results in stabilized inheritance of par-deleted plasmids, restored supercoiling of (G-C) tracts in these plasmids and increased OsO4 reactivity in par+ replicons. Removal of par to a site more distant from the origin decreased supercoiling in a (G-C) tract adjacent to the origin and diminished par function. Collectively, these findings indicate that par activity is dependent on its ability to produce supercoiling at the replication origin rather than on the overall superhelical density of the plasmid DNA.  相似文献   

5.
A set of AT-rich repeats is a common motif in prokaryotic replication origins. We have screened for proteins binding to the AT-rich repeat region in plasmids F, R1 and pSC101 using an electrophoretic mobility shift assay with PCR-amplified DNA fragments from the origins. The IciA protein, which is known to bind to the AT-rich repeat region in the Escherichia coli origin of chromosome replication, oriC, was found to bind to the corresponding region from plasmids F (oriS) and R1, but not to pSC101. DNase I footprint analysis showed that IciA interacted with the AT-rich region in both F and R1. When the IciA gene was deleted, the copy number of plasmid F increased somewhat, whereas there was no major effect on the replication of pSC101 and R1, or on the E. coli chromosome.  相似文献   

6.
We report here that the Escherichia coli replication proteins DnaA, which is required to initiate replication of both the chromosome and plasmid pSC101, and DnaB, the helicase that unwinds strands during DNA replication, have effects on plasmid partitioning that are distinct from their functions in promoting plasmid DNA replication. Temperature-sensitive dnaB mutants cultured under conditions permissive for DNA replication failed to partition plasmids normally, and when cultured under conditions that prevent replication, they showed loss of the entire multicopy pool of plasmid replicons from half of the bacterial population during a single cell division. As was observed previously for DnaA, overexpression of the wild-type DnaB protein conversely stabilized the inheritance of partition-defective plasmids while not increasing plasmid copy number. The identification of dnaA mutations that selectively affected either replication or partitioning further demonstrated the separate roles of DnaA in these functions. The partition-related actions of DnaA were localized to a domain (the cell membrane binding domain) that is physically separate from the DnaA domain that interacts with other host replication proteins. Our results identify bacterial replication proteins that participate in partitioning of the pSC101 plasmid and provide evidence that these proteins mediate plasmid partitioning independently of their role in DNA synthesis.  相似文献   

7.
Deletions within E. coli plasmids carrying yeast rDNA.   总被引:4,自引:0,他引:4  
A Cohen  D Ram 《Gene》1978,3(2):135-147
Deletions occur in recombinant DNA plasmids that contain yeast ribosomal DNA (rDNA) inserted into the E. coli plasmids pSC101 and pMB9. Deletions within a pMB9 plasmid containing an insert longer than one tandem rDNA repeat apparently are due to homologous recombination because (1) all of the independently derived deletion products of this plasmid lost one complete rDNA repeat (8.6 kb) and retained only a single copy of the segment repeated at the ends of the original insert and (2) deletions were detected only when the insert had terminal redundancy. Deletions also occur within a pSC101 plasmid containing a tandem duplication of a segment (4.7 kb) including both pSC101 DNA and rDNA. Once again these deletions appear to be due to the presence of a duplicated region because all deletion products have lost one complete repeat. Deletions within both of these plasmids took place in both rec+ and recA- host cells, but occurred more frequently in rec+ cells. Oligomerization of the deletion products also occurred in both hosts and was more frequent in rec+ cells.  相似文献   

8.
The minimal replication origin (ori) of the plasmid pSC101 has been previously defined as an approximately 220-bp region by using plasmids defective in the par region, which is a cis-acting determinant of plasmid stability. This ori region contains the DnaA binding sequence, three repeated sequences (iterons), and an inverted repeat (IR) element (IR-1), one of the binding sites of an initiator protein, Rep (or RepA). In the present study, we show that plasmids containing par can replicate at a nearly normal copy number in the absence of IR-1 but still require a region (the downstream region) between the third iteron and IR-1. Because par is dispensable in plasmids retaining IR-1, par and IR-1 can compensate each other for efficient replication. The region from the DnaA box to the downstream region can support DNA replication at a reduced frequency, and it is designated "core-ori." Addition of either IR-1 or par to core-ori increases the copy number of the plasmid up to a nearly normal level. However, the IR-1 element must be located downstream of the third iteron (or upstream of the rep gene) to enhance replication of the plasmid, while the par region, to which DNA gyrase can bind, functions optimally regardless of its location. Furthermore, the enhancer activity of IR-1 is dependent on the helical phase of the DNA double helix, suggesting that the Rep protein bound to IR-1 stimulates the activation of ori via its interaction with another factor or factors capable of binding to individual loci within ori.  相似文献   

9.
RepA, a plasmid-encoded gene product required for pSC101 replication in Escherichia coli, is shown here to inhibit the replication of pSC101 in vivo when overproduced 4- to 20-fold in trans. Unlike plasmids whose replication is prevented by mutations in the repA gene, plasmids prevented from replicating by overproduction of the RepA protein were lost rapidly from the cell population instead of being partitioned evenly between daughter cells. Removal of the partition (par) locus increased the inhibitory effect of excess RepA on replication, while host and plasmid mutations that compensate for the absence of par, or overproduction of the E. coli DnaA protein, diminished it. A repA mutation (repA46) that elevates pSC101 copy number almost entirely eliminated the inhibitory effect of RepA at high concentration and stimulated replication when the protein was moderately overproduced. As the RepA protein can exist in both monomer and dimer forms, we suggest that overproduction promotes RepA dimerization, reducing the formation of replication initiation complexes that require the RepA monomer and DnaA; we propose that the repA46 mutation alters the ability of the mutant protein to dimerize. Our discovery that an elevated intracellular concentration of RepA specifically impedes plasmid partitioning implies that the RepA-containing complexes initiating pSC101 DNA replication participate also in the distribution of plasmids at cell division.  相似文献   

10.
11.
12.
Transfer of yeast telomeres to linear plasmids by recombination   总被引:45,自引:0,他引:45  
B Dunn  P Szauter  M L Pardue  J W Szostak 《Cell》1984,39(1):191-201
Three distinct segments (the partition-related, or PR segments) within the 370 bp par region of pSC101 have been shown by deletion analysis to be involved in partitioning of the plasmid to daughter cells. The two lateral segments are direct repeats, each of which potentially can pair with an inverted repeat located between them to form a hairpin-loop structure. Deletion of either lateral segment, together with the middle segment, results in plasmid instability (the Par- phenotype). Deletion of one PR segment yields a stable plasmid that nevertheless shows reduced ability to compete with a coexisting wild-type derivative of the same replicon (the Cmp- phenotype). Deletion of all three segments results in a rate of plasmid loss far in excess of that predicted from the observed copy number of the plasmid. Analysis of the segregation properties of these mutants and of temperature-sensitive and high copy number derivatives of the pSC101 replicon suggests a model in which the par function allows the nonreplicating plasmids of the intracellular pool to be counted as individual molecules, and to be distributed evenly to daughter cells. In the absence of par, the multicopy pool of plasmids behaves as a single segregation unit.  相似文献   

13.
Summary The relationship between replication control and plasmid incompatibility has been investigated using a composite replicon, pPM1, which consists of the pSC101 plasmid ligated to another small multicopy plasmid, RSF1050. Since pPM1 can utilise the replication system of either of the two functionally distinct components, propagation of the composite plasmid can occur in the presence of a mutation of one of its moieties. Such mutants are detected by their inability to rescue the composite plasmid under conditions not permissive for replication of the other moiety. Mutations in incompatibility functions can be detected by the failure of the composite replicon to exclude co-existing plasmids carrying a replication system identical to the one on pPM1.The inability of the composite plasmid to replicate at 42° in a host synthesizing temperature-sensitive DNA polymerase I, which is required by the RSF1050 replication system, was used to isolate pPM1 mutants defective in replication of the pSC101 component. Mutants defective in the incompatibility functions of pSC101 were obtained by selecting derivatives that allow the stable coexistence of a second pSC101 replicon in the same cell. Analysis of these two classes of mutants indicates that plasmids selected for defective pSC101 replication ability nevertheless retain pSC101 incompatibility. In contrast, plasmid mutants that have lost incompatibility functions were found always to be defective in replication ability.  相似文献   

14.
Summary We have shown that the plasmid pSC101 is unable to be maintained in strains of E. coli carrying deletions in the genes himA and hip which specify the pleitropic heterodimeric DNA binding protein, IHF. We show that this effect is not due to a modulation of the expression of the pSC101 RepA protein, required for replication of the plasmid. Inspection of the DNA sequence of the essential replication region of pSC101 reveals the presence of a site, located between the DnaA binding-site and that of RepA, which shows extensive homology with the consensus IHF binding site. The proximity of the sites suggests that these three proteins, IHF, DnaA, and RepA may interact in generating a specific DNA structure required for initiation of pSC101 replication.  相似文献   

15.
16.
17.
The construction of seven chimeric plasmids (pRS series) carrying EcoRI endonuclease-generated segments of the F sex factor cloned onto the vector pSC101 is described. BamHI endonuclease analysis of these seven plasmids, the six previously described pRS plasmids (Skurray, R. A., Nagaishi, H., and Clark, A. J. (1976) Proc. Nat. Acad. Sci. USA73, 64–68) and F plasmid DNA has enabled a partial BamHI map of F to be constructed; the orientation of insertion of F DNA segments into the pSC101 vector was also established for nine of the pRS plasmids. Results indicate that in the absence of their normal promoter, F cistrons cloned into the EcoRI site of pSC101 are expressed regardless of orientation of insertion although there is a preferred orientation for high levels of expression.  相似文献   

18.
Nucleotide sequences were determined for a region essential for autonomous replication and partitioning of pSC101, a plasmid whose replication is dependent on the Escherichia coli dnaA gene product. The essential replication region contains one long coding sequence, rep101 , for a protein composed of 316 amino acids, and a polypeptide approximately 37 X 10(3) Mr in size was identified as the rep101 gene product. rep101 is preceded by two inverted repeat sequences, three directly repeated sequences and a region of high A + T content containing a sequence similar to the E. coli oriC consensus sequence. Because the lesions in seven replication-deficient insertion mutants, four mutants with increased copy number and one temperature-sensitive replication mutant occur within rep101 , the rep101 gene product must control pSC101 replication and copy number. par, a region adjacent to the replication region, which functions in stable plasmid inheritance, contains several inverted repeat sequences.  相似文献   

19.
A derivative of pSC101, pLC709, was constructed by ligation of the HincII-A fragment of pSC101 to the mini-colEI plasmid pVH51 and to a DNA fragment encoding resistance to the antibiotics streptomycin and spectinomycin. Insertions of the transposon Tn1000 (gamma-delta) into the pSC101 replication region of pLC709 were isolated following cotransfer of the plasmid with the sex factor F. The sites of insertion of the transposon were determined by restriction enzyme analysis and the replication and incompatibility properties of the insertion plasmids and DNA fragments cloned from them were analysed. The insertion mutations defined a locus, inc, of approximately 200 base-pairs that is responsible for pSC101-specific incompatibility. Two mutations adjacent to this region inactivate pSC101 replication but can be complemented in trans by a wild-type pSC101 plasmid, and thus define a trans-acting replication function, rep. The inc locus is within a larger region of some 450 base-pairs that is essential for pSC101 replication and that includes the origin of replication. This 450 base-pair segment can replicate in the presence of a helper plasmid that supplies the rep function in trans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号