首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transcription complex of vesicular stomatitis virus   总被引:10,自引:0,他引:10  
A K Banerjee 《Cell》1987,48(3):363-364
  相似文献   

2.
The matrix (M) protein of vesicular stomatitis virus regulates transcription.   总被引:36,自引:0,他引:36  
G M Clinton  S P Little  F S Hagen  A S Huang 《Cell》1978,15(4):1455-1462
  相似文献   

3.
4.
5.
D Chattopadhyay  A K Banerjee 《Cell》1987,49(3):407-414
We have investigated the functional significance of phosphoserine residues that lie in the L protein-binding domain between amino acids 213 and 247 of the phosphoprotein (NS) of vesicular stomatitis virus. A series of mutant NS proteins were made by cell-free translation of mRNAs transcribed from the cloned gene. Site-directed substitution of alanine for both serine 236 and serine 242 essentially abolished RNA synthesis catalyzed by the NS-L complex. Substitution of either of these serines reduced RNA synthesis by 75%. Serine 218 played no major role in RNA synthesis. Phosphorylation of NS by the L protein was abrogated by substitution of either serine 236 or serine 242. These results indicate that phosphorylation of serines 236 and 242 in the NS protein regulates its binding with the L protein and the N-RNA template and is essential for activation of viral RNA synthesis.  相似文献   

6.
The L and NS proteins of vesicular stomatitis virus were purified from transcribing ribonucleoprotein complex and were used to study their requirements and functions during reconstitution of RNA synthesis in vitro. The requirements for L and NS proteins for optimal RNA synthesis were found to be catalytic and stoichiometric, respectively. Addition of increasing amounts of NS protein to N-RNA template and saturating L protein, the ratio of N-mRNA to leader RNA synthesis increased linearly. In contrast, when the concentration of L protein was increased the corresponding ratio remained constant. These results, coupled with the observation that the L protein is involved in the initiation of RNA synthesis, suggest that the NS protein is involved in the RNA chain elongation step. The NS protein possibly interacts with both the L protein and the template N-RNA and unwinds the latter to facilitate the movement of L protein on the template RNA.  相似文献   

7.
We previously demonstrated that dexamethasone treatment of L929 cells inhibited plaque formation by vesicular stomatitis virus (VSV), encephalomyocarditis virus, or vaccinia virus. We now have characterized the antiviral effects of glucocorticoids in L929 cells. Dexamethasone did not directly inactivate VSV nor did steroid treatment of L929 cells affect virion adsorption or penetration. The VSV yield in L929 cells treated with dexamethasone for a period of only 4 or 8 hr was decreased by 50% when cells were infected the day following steroid treatment. Treating L929 cells with dexamethasone for a longer period resulted in greater inhibitions of virus synthesis. Interferon activity (less than 5 units/ml) was not detected in L929 cell culture fluids and cell sonicates from steroid-treated cells and the addition of antiserum to murine alpha/beta-interferon had no effect on the ability of dexamethasone to inhibit VSV replication. Dexamethasone treatment of L929 cells did not induce the production of double-stranded RNA-dependent protein kinase but did result in a slight elevation of 2-5A oligoadenylate synthetase activity, two enzymatic activities associated with the antiviral state induced by interferon. However, the elevated 2-5A synthetase activity was not associated with an inhibition of VSV RNA accumulation in dexamethasone-treated L929 cells. By contrast, the synthesis of all five VSV proteins was reduced by 50-75% in dexamethasone-treated L929 cells as early as 4 hr after infection. Thus, the dexamethasone-mediated inhibition of VSV replication in L929 cells is associated with decreased production of VSV structural proteins.  相似文献   

8.
Proteasome activity is an important part of viral replication. In this study, we examined the effect of proteasome inhibitors on the replication of vesicular stomatitis virus (VSV) and poliovirus. We found that the proteasome inhibitors significantly suppressed VSV protein synthesis, virus accumulation, and protected infected cells from toxic effect of VSV replication. In contrast, poliovirus replication was delayed, but not diminished in the presence of the proteasome inhibitors MG132 and Bortezomib. We also found that inhibition of proteasomes stimulated stress-related processes, such as accumulation of chaperone hsp70, phosphorylation of eIF2alpha, and overall inhibition of translation. VSV replication was sensitive to this stress with significant decline in replication process. Poliovirus growth was less sensitive with only delay in replication. Inhibition of proteasome activity suppressed cellular and VSV protein synthesis, but did not reduce poliovirus protein synthesis. Protein kinase GCN2 supported the ability of proteasome inhibitors to attenuate general translation and to suppress VSV replication. We propose that different mechanisms of translational initiation by VSV and poliovirus determine their sensitivity to stress induced by the inhibition of proteasomes. To our knowledge, this is the first study that connects the effect of stress induced by proteasome inhibition with the efficiency of viral infection.  相似文献   

9.
Vesicular stomatitis virus (VSV) is an animal virus that based on electron microscopy and its dependence on acidic cellular compartments for infection is thought to enter its host cells in a clathrin-dependent manner. The exact cellular mechanism, however, is largely unknown. In this study, we characterized the entry kinetics of VSV and elucidated viral requirements for host cell factors during infection in HeLa cells. We found that endocytosis of VSV was a fast process with a half time of 2.5 to 3 min and that acid activation occurred within 1 to 2 min after internalization in early endosomes. The majority of viral particles were endocytosed in a clathrin-based, dynamin-2-dependent manner. Although associated with some of the surface-bound viruses, the classical adaptor protein complex AP-2 was not required for infection. Time-lapse microscopy revealed that the virus either entered preformed clathrin-coated pits or induced de novo formation of pits. Dynamin-2 was recruited to plasma membrane-confined virus particles. Thus, VSV can induce productive internalization by exploiting a specific combination of the clathrin-associated proteins and cellular functions.  相似文献   

10.
Vesicular stomatitis virus (VSV) leader RNA and a synthetic oligodeoxynucleotide of the same sequence were found to inhibit the replication of adenovirus DNA in vitro. In contrast, the small RNA transcribed by the VSV defective interfering particle DI-011 did not prevent adenovirus DNA replication. The inhibition produced by leader RNA was at the level of preterminal protein (pTP)-dCMP complex formation, the initiation step of adenovirus DNA replication. Initiation requires the adenovirus pTP-adenovirus DNA polymerase complex (pTP-Adpol), the adenovirus DNA-binding protein, and nuclear factor I. Specific replication in the presence of leader RNA was restored when the concentration of adenovirus-infected or uninfected nuclear extract was increased or by the addition of purified pTP-Adpol or HeLa cell DNA polymerase alpha-primase to inhibited replication reactions. Furthermore, the activities of both purified DNA polymerases could be inhibited by the leader sequence. These results suggest that VSV leader RNA is the viral agent responsible for inhibition of adenovirus and possibly cellular DNA replication during VSV infection.  相似文献   

11.
12.
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum.  相似文献   

13.
14.
The antiviral activity of natural phloroglucinols and of synthesized mono- and diacylphloroglucinols, and 2,6-diacyl-4,4-dialkylcyclohexa-1,3,5-triones was investigated. A correlation between the acyl chain length and inhibitory activity against vesicular stomatitis virus (VSV) was observed. Potent antiviral activity was found in di-isovalerylphoroglucinol. 2,6-Diacyl-4,4-dialkylcyclohexa-1,3,5-triones inhibited replication of the virus with low cytotoxicity.  相似文献   

15.
16.
Biophysical studies of vesicular stomatitis virus   总被引:24,自引:0,他引:24       下载免费PDF全文
McCombs, Robert M. (Baylor University College of Medicine, Houston, Tex.), Matilda Benyesh-Melnick, and Jean P. Brunschwig. Biophysical studies of vesicular stomatitis virus: J. Bacteriol. 91:803-812. 1966.-The infectivity and morphology of vesicular stomatitis virus (VSV) were studied after density gradient centrifugation in cesium chloride (CsCI), potassium tartrate (KT), and sucrose. Centrifugation in CsCl revealed two equally infectious bands corresponding to densities of 1.19 and 1.22 g/ml, and a third (density, 1.26 g/ml) band of low infectivity. Two bands (densities of 1.16 and 1.18 g/ml) were observed in the KT gradient, in which the lighter band contained most of the infectivity. Centrifugation in sucrose resulted in a single broad infectious band (density, 1.16 g/ml). The typical rod-shaped VSV particles were found mainly in the lighter bands obtained in CsCl (1.19 g/ml) and KT (1.16 g/ml) and in the single sucrose gradient band (1.16 g/ml). Bent particles equally as infectious as the rod-shaped particles were a constant finding in the CsCl preparations, and were observed mainly in the second band (density, 1.19 g). Numerous strands 15mmu wide were found in the third CsCl (density, 1.26 g/ml) and the second KT (1.18 g/ml) bands. Similar strands could be liberated from VSV particles after treatment with deoxycholate. Internal transverse striations were found to be a regular feature of VSV particles examined with the pseudoreplication negative-staining technique. For crude virus stocks, the physical particle-to-infectivity ratio ranged from 73 to 194. Several morphological similarities between VSV and myxoviruses were observed, including 10 mmu surface projections, pleomorphic morphological forms, and 15 mmu seemingly nucleoprotein strands.  相似文献   

17.
18.
19.
20.
Cyclopentenone prostaglandins (PGs) exhibit antiviral activity against RNA and DNA viruses in mammalian cell lines, and this effect has been associated with the induction of a heat shock protein (hsp70). We investigated the effect of prostaglandin A1 (PGA1) on the replication of vesicular stomatitis virus (VSV) in Aedes albopictus (mosquito) cells. PGA1 was found to inhibit VSV replication dose dependently. Virus yield was reduced to 50% (3 microg PGA1/ml) and to 95% with 8 microg PGA1/ml. Even with the dramatic reduction of virus production observed in cells treated with PGA1, VSV-specific protein synthesis was unaltered. Treatment of cells with PGA1 (5 microg/ml) stimulated the synthesis of a polypeptide identified as a heat-shock protein (hsp) by immunoblot analysis. PGA1 induced hsp70 synthesis in uninfected cells. However, in VSV-infected cells the induction of hsp70 by PGA1 was reduced. This is the first report of antiviral effects of PGs affecting the replication of VSV in a mosquito cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号