首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hyperlipidaemias are common in obese people, and they increase the risk of cardiovascular diseases such as coronary heart disease (CHD) and atherosclerosis (AS). Previous studies have shown that several drugs can depress serum cholesterol. However, they could cause serious side effects in various clinical settings. The objective of the present study was to evaluate the lipid-lowering effects of polydatin in high-fat/cholesterol (HFC)-fed hamsters. The levels of lipids in hamsters were measured enzymatically before and after the administration of polydatin. Significant differences between HFC and HFC+polydatin were detected for those concentrations. Decreased levels of serum TC, TG and LDL-C and the concentrations of hepatic TG were found. Experimental results also showed that polydatin elevated LDL-C/HDL-C and TC/HDL-C ratios. In concert with other effects, serum cholesterol-lowering effect in hamsters may contribute to the regulation properties attributed to polydatin.  相似文献   

3.
4.
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibits the clearance of low-density lipoprotein (LDL) cholesterol (LDL-C) from plasma by directly binding with the LDL receptor (LDLR) and sending the receptor for lysosomal degradation. As the interaction promotes elevated plasma LDL-C levels, and therefore a predisposition to cardiovascular disease, PCSK9 has attracted intense interest as a therapeutic target. Despite this interest, an orally bioavailable small-molecule inhibitor of PCSK9 with extensive lipid-lowering activity is yet to enter the clinic. We report herein the discovery of NYX-PCSK9i, an orally bioavailable small-molecule inhibitor of PCSK9 with significant cholesterol-lowering activity in hyperlipidemic APOE13-Leiden.CETP mice. NYX-PCSK9i emerged from a medicinal chemistry campaign demonstrating potent disruption of the PCSK9-LDLR interaction in vitro and functional protection of the LDLR of human lymphocytes from PCSK9-directed degradation ex vivo. APOE13-Leiden.CETP mice orally treated with NYX-PCSK9i demonstrated a dose-dependent decrease in plasma total cholesterol of up to 57%, while its combination with atorvastatin additively suppressed plasma total cholesterol levels. Importantly, the majority of cholesterol lowering by NYX-PCSK9i was in non-HDL fractions. A concomitant increase in total plasma PCSK9 levels and significant increase in hepatic LDLR protein expression strongly indicated on-target function by NYX-PCSK9i. Determinations of hepatic lipid and fecal cholesterol content demonstrated depletion of liver cholesteryl esters and promotion of fecal cholesterol elimination with NYX-PCSK9i treatment. All measured in vivo biomarkers of health indicate that NYX-PCSK9i has a good safety profile. NYX-PCSK9i is a potential new therapy for hypercholesterolemia with the capacity to further enhance the lipid-lowering activities of statins.  相似文献   

5.
为了探讨大米蛋白对成熟期大鼠胆固醇代谢调控因子一低密度脂蛋白受体(low—densitv lipoprotein receptor.LDLR)的调控作用,以18周龄雄性Wistar成熟期大鼠为研究对象,应用大米蛋白及酪蛋白为食物蛋白源,饲喂无胆固醇及富含胆固醇饲料,经18日自由摄食后,测定实验鼠血浆总胆固醇、血浆高密度胆固醇水平及肝脏LDLR基因及蛋白表达水平。对照酪蛋白,大米蛋白均能显著降低大鼠血浆总胆固醇、血浆非高密度胆固醇水平及动脉粥样硬化指数,并且,显著刺激肝脏LDL基因及蛋白表达水平。实验结果表明,大米蛋白降低成熟期大鼠血浆胆固醇水平的作用功效与膳食胆固醇添加与否无关,大米蛋白降胆固醇的作用机制之一是能够有效刺激LDLR的表达,从而抑制LDL—C的转运入血。  相似文献   

6.
7.
The absorption of cholesterol by the small intestine is a major route for the net entry of cholesterol into the body and can therefore affect the plasma low density lipoprotein-cholesterol (LDL-C) concentration. These studies used ezetimibe, a potent inhibitor of cholesterol absorption, to delineate the biochemical and molecular changes in intrahepatic metabolism and biliary lipid secretion when there is a major reduction in chylomicron cholesterol delivery to the liver. In female LDL receptor (LDLR)-deficient (LDLR-/-) mice fed a basal diet containing ezetimibe (0-10 mg/day/kg body weight), cholesterol absorption was reduced up to 91%, fecal neutral sterol excretion was increased up to 4.7-fold, and plasma total cholesterol concentrations decreased by up to 18%. Blocking cholesterol absorption prevented the accumulation of very low density lipoproteins and LDL in the circulation of LDLR-/- mice fed a lipid-rich diet. In female LDLR+/+ mice fed the lipid-rich diet with ezetimibe, the relative mRNA level for the LDLR in the liver was 2-fold greater than in matching mice given the lipid-rich diet alone. We conclude that in the mouse the reduction in plasma LDL-C levels induced by blocking cholesterol absorption reflects both a diminished rate of LDL-C production and a modest increase in hepatic LDLR expression.  相似文献   

8.
The alkaloid drug berberine (BBR) was recently described to decrease plasma cholesterol and triglycerides (TGs) in hypercholesterolemic patients by increasing expression of the hepatic low density lipoprotein receptor (LDLR). Using HepG2 human hepatoma cells, we found that BBR inhibits cholesterol and TG synthesis in a similar manner to the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Significant increases in AMPK phosphorylation and AMPK activity were observed when the cells were incubated with BBR. Activation of AMPK was also demonstrated by measuring the phosphorylation of acetyl-CoA carboxylase, a substrate of AMPK, correlated with a subsequent increase in fatty acid oxidation. All of these effects were abolished by the mitogen-activated protein kinase kinase inhibitor PD98059. Treatment of hyperlipidemic hamsters with BBR decreased plasma LDL cholesterol and strongly reduced fat storage in the liver. These findings indicate that BBR, in addition to upregulating the LDLR, inhibits lipid synthesis in human hepatocytes through the activation of AMPK. These effects could account for the strong reduction of plasma TGs observed with this drug in clinical trials.  相似文献   

9.
Hypertriglyceridemia, closely associated with insulin resistance, is induced on high-fat diets (HFD) in humans but not in mouse models. Mechanisms underlying this species difference are still unclear. Hamsters resemble humans in lipoprotein metabolism. Here by comparing the responses to HFD in hamsters and mice, we found that hepatic TG secretion, MTP expression and plasma free fatty acid (FFA) level were increased in hamsters on HFD feeding but decreased in mice. Although hepatic steatosis and de novo lipogenesis were induced by HFD feeding in both models, cholesterol biosynthesis was inhibited in mice but not in hamsters. Moreover, in insulin deficient state, HFD increased plasma TG level, hepatic TG secretion, MTP expression and plasma FFA level in both models. In summary, distinct changes of MTP expression, in correlation with hepatic TG secretion, underlie the opposite responses of plasma TG levels to high-fat diets in hamsters and mice. Furthermore, hepatic TG secretion and MTP expression seems to be associated with plasma FFA level and cholesterol biosynthesis but not hepatic steatosis or de novo lipogenesis.  相似文献   

10.
Due to the insufficient fetal cholesterol synthesis, maternal cholesterol transport through the placenta becomes an important source of fetal cholesterol pool, which is essential for fetal growth and development. This study aimed to investigate the effects of dexamethasone on fetal cholesterol levels, and explore its placental mechanism. Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.8 mg/kg·d) from gestational day 9 to 20. Results showed that dexamethasone increased maternal serum total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C) levels, as well as placental cholesterol synthesis and TC concentration, while reduced fetal birth weight, and serum TC, HDL-C and LDL-C levels. Meanwhile, the expression of placental cholesterol transporters, including low-density lipoprotein receptor (LDLR), scavenger receptor class B type I (SR-B1) and ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) were decreased by dexamethasone. Furthermore, the expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) were increased, while the H3K9ac and expression levels of liver X receptor α (LXRα) promoter were reduced. In human trophoblast cell line (BeWo), dexamethasone concentration-dependently decreased the expression levels of LDLR, SR-B1, ABCA1, ABCG1 as well as LXRα. Dexamethasone (2500 nM) induced GR translocation into nucleus and recruited HDAC3. Furthermore, LXRα agonist and GR inhibitor reversed respectively dexamethasone-induced the expression inhibitions of cholesterol transporter and LXRα, and HDAC3 siRNA reversed the H3K9ac level of LXRα promoter and its expression. Together, dexamethasone impaired placental cholesterol transport and eventually decreased fetal cholesterol levels, which is related to the down-regulation of LXRα mediated by GR/HDAC3/H3K9ac signaling.  相似文献   

11.
The effects of taurine on hepatic cholesterol metabolism were investigated in hamsters fed a high-fat diet or normal chow. Two weeks-treatment of taurine at 1% in drinking water prevented high-fat diet-induced increase in cholesterol levels of serum and liver. The decrease in serum cholesterol by taurine was due to decrease in non-HDL cholesterols. A similar tendency was noted in serum and liver cholesterol levels of hamsters fed a normal diet. In hamsters fed a high-fat diet, taurine prevented elevation in hepatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and increased the activity of cholesterol 7alpha-hydroxylase. Taurine also increased cholesterol 7alpha-hydroxylase activity in hamsters fed normal chow. Studies on liver membranes revealed that taurine increased 125I-labeled LDL binding by 52% and 58% in hamsters fed either a normal chow or high-fat diet, respectively. Furthermore, LDL kinetic analysis showed that taurine intake resulted in significant faster plasma LDL fractional catabolic rates (FCR). These results suggest that taurine elevates hepatic LDL receptor and thereby decreases serum cholesterol levels, an event which may be the result of hepatic cholesterol depletion as a consequence of increased bile acid synthesis via enhancement of cholesterol 7alpha-hydroxylase activity. Thus, up-regulation of the LDL receptor and subsequent increase in receptor- mediated LDL turnover may be a key event in the cholesterol-lowering effects of taurine in hamsters.  相似文献   

12.
《Phytomedicine》2014,21(11):1373-1381
Current work was conducted to evaluate the safety and antihypercholesterolemic activity of jatrorrhizine extracted from Rhizoma Coptidis (RC) and its potential mechanism on regulating cholesterol metabolism. It was found that the LD50 of jatrorrhizine in mice was more than 5500 mg/kg and there were no influences on clinical signs, organ weight changes, urinalysis and hematological parameters, gross necropsy and histological alterations in jatrorrhizine-treated rats during the 3-month period, compared to the control group. Jatrorrhizine showed a strong lipid-lowering effect in a dose-dependent manner. Oral administration of 70.05 mg/kg of jatrorrhizine on Mesocricetus auratus (Syrian golden hamsters) exhibited significant decrease in TC, TG, and LDL-c levels by 20%, 43%, and 19%, respectively, and increase in HDL-c and total bile acids (TBA) content in feces (p < 0.01), compared to high-fat and high-cholesterol (HFHC) group. Besides, jatrorrhizine dose-dependently slowed the rate of weight gain. The results of qRT-PCR, western blotting and ELISA revealed that jatrorrhizine significantly up-regulated the mRNA and protein expression of LDLR and CYP7A1, but exhibited no significant effect on mRNA and protein expression of HMGR and ASBT in hamsters.In conclusion, jatrorrhizine was a safe and potential antihypercholesterolemic agent from RC which could improve the utilization and excretion of cholesterol by up-regulating the mRNA and protein expression of LDLR and CYP7A1.  相似文献   

13.
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr?/?) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE?/?) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE?/? mice. In apoE?/? mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE?/? mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.  相似文献   

14.
本文研究了实验性在醇血症大鼠肝脏低密度脂蛋白受体(LDL-R)活性变化及有氧运动时LDL-R活性调节的影响,发现,高脂(HC)组肝组织匀浆LDL-RI自古以来生较正常对照(NC)组降低37%(P〈0.05),同时血清大醇(TC)、低密度脂收白胆固醇(LDL-C)及血清栽脂蛋白B(ApoB)均显著高于NC组(P〈0.01);高脂+运动(HE)组TC、LDL-C及ApoB均明显低于HC组,而LDL-R  相似文献   

15.
Berberine (BBR), the major isoquinoline alkaloid in Chinese herb Rhizoma coptidis, has significant lipid-lowering effect by upregulating hepatic low-density lipoprotein receptor (LDLR) expression. In a previous study, we have indicated that berberrubine (M3), a major metabolite of BBR in vivo, displays the most potential hypolipidemic effects via upregulating LDLR expression in human hepatoma (HepG2) cells compared with BBR and 3 other metabolites. Accordingly, 9 M3 analogs (A1-A9) were modified at the C9 position. We aimed to find a new promising agent by evaluating the cholesterol-lowering effect and clarifying the related molecular mechanism. In the current study, the cellular cholesterol content was assayed with a commercial cholesterol assay kit. Real-time polymerase chain reaction and Western blot assay were used to explore the molecular mechanism of M3 and its analogs on the hypolipidemic effect. Among M3 and its analogs, hydroxypropyl-berberrubine (A8) exhibited the highest potential effects on the upregulation of LDLR expression, which was accompanied by a steady decline of proprotein convertase subtilisin/kexin type 9 (PCSK9) messenger RNA and protein levels. Furthermore, inhibition of extracellular signal-regulated kinase (ERK) activity with PD98059 prevented the upregulation of LDLR and downregulation of PCSK9 induced by A8. The current study revealed that M3 and its structurally modified analog, A8, could regulate hepatic LDLR and PCSK9 expression to exert lipid-lowering effects via the ERK signal pathway, while A8 showed a stronger effect and might be a promising drug candidate against hyperlipidemia.  相似文献   

16.
Male golden hamsters were rendered hypercholesterolemic by feeding diets enriched with cholesterol and fat. In the first series of experiments, 5% butter and 1% cholesterol were added to a chow diet and plasma cholesterol levels were maintained at 350–390 mg/dl over the entire experimental period. Groups of hamsters and their age controls consuming the chow diet, were killed after 7, 15 and 20 months when the aorta was examined for atherosclerosis by determination of cholesterol mass. In the controls, aortic total cholesterol (TC) increased with age by 28% and esterified cholesterol increased to 11% of TC. In the hypercholesterolemic animals aortic TC was only 28% higher than in the controls and cholesteryl ester was also 11.5% of TC. In the second series, one group of hamsters were fed a semi-purified diet deficient in vitamin E, containing 1% cholesterol and 10% lard; a second group received the same diet, but supplemented with vitamin E. Controls consumed local chow. After 7 months on the vitamin E deficient diet plasma α-tocopherol was 0.05 mg/l, in those supplemented with vitamin E it was 20 mg/l, while in the controls it was 3.3 mg/l. Plasma thiobarbituric acid reactive substances (TBARS) were higher in the vitamin E deficient group and there was a greater propensity of lipoproteins (d < 1.063 g/ml to peroxidation in vitro than in the vitamin E supplemented group. Plasma cholesterol was 366 mg/dl in the vitamin E deficient, 336 mg/dl in the vitamin E supplemented group, and 64 mg/dl in controls. Aortic cholesterol was 79.1 in vitamin E supplemented and 84.4 μg/ 10 mg dry weight in vitamin E deficient hamsters. In both series of experiments, HDL amounted to 36–41% of plasma TC in the hypercholesterolemic animals and 59–62% in the controls. In conclusion: the hamster appears to be quite resistant to atherosclerosis in face of sustained hypercholesterolemia, even in the presence of increased peroxidative stress caused by vitamin E deficiency. This relative resistance could be related to commensurate increase in plasma HDL which was observed in both series of experiments. Since vitamin E deficiency did not enhance aortic cholesteryl ester deposition, the protective effect of HDL seems to be related to its role in reverse cholesterol transport, rather than in prevention of peroxidation.  相似文献   

17.
目的:探究银灵通胶囊对脂质代谢的影响及其机制。方法:建立大鼠高脂模型,用药后检测其血脂、丙二醛(MDA)、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)的活性,检测肝脏组织的高密度脂蛋白受体SR-BI、低密度脂蛋白受体(LDLR)、氧化低密度脂蛋白(ox-LDH)受体CD36蛋白表达的mRNA表达水平,检测血管组织学变化。结果:高脂饮食明显升高大鼠血清中总胆固醇(CH)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)和动脉硬化指数(AI值),银灵通胶囊组可降低上述指标,且呈一定的浓度依赖;高脂饮食可增加肝脏中SR-BI及CD36表达,降低LDLR表达,银灵通胶囊引起SR-BI的过度表达,使LDLR表达增加,CD36表达下降。高脂饮食使血清中MDA的含量增加,给予银灵通胶囊后,明显降低血清MDA的含量。结论:银灵通胶囊具有调节脂质代谢,抗动脉粥样硬化(AS)及抗脂质过氧化作用。其机制与银灵通胶囊能引起肝脏中SR-BI的过度表达及LDLR表达增加,降低肝脏中CD36表达和血清MDA含量有关。  相似文献   

18.
19.
Currently, diets higher in polyunsaturated fat are believed to lower blood cholesterol concentrations, and thus reduce atherosclerosis, greater than diets containing high amounts of saturated or possibly even monounsaturated fat. The present study was designed to investigate the effect of diets containing mid- or high-linoleic oil versus the typical high-linoleic sunflower oil on LDL oxidation and the development of early atherosclerosis in a hypercholesterolemic hamster model. Animals were fed a hypercholesterolemic diet containing 10% mid-oleic sunflower oil, high-oleic olive oil, or high-linoleic sunflower oil (wt/wt) plus 0.4% cholesterol (wt/wt) for 10 weeks. After 10 weeks of dietary treatment, only the animals fed the mid-oleic sunflower oil had significant reductions in plasma LDL-C levels (-17%) compared to the high-linoleic sunflower oil group. The high-oleic olive oil-fed hamsters had significantly higher plasma triglyceride levels (+41%) compared to the high-linoleic sunflower oil-fed hamsters. The tocopherol levels in plasma LDL were significantly higher in hamsters fed the mid-oleic sunflower oil (+77%) compared to hamsters fed either the high-linoleic sunflower or high-oleic olive oil. Measurements of LDL oxidation parameters, indicated that hamsters fed the mid-oleic sunflower oil and high-oleic olive oil diets had significantly longer lag phase (+66% and +145%, respectively) and significantly lower propagation rates (-26% and -44%, respectively) and conjugated dienes formed (-17% and -25%, respectively) compared to the hamsters fed the high-linoleic sunflower oil. Relative to the high-linoleic sunflower oil, aortic cholesterol ester was reduced by -14% and -34% in the mid-oleic sunflower oil and high-oleic olive oil groups, respectively, with the latter reaching statistical significance. Although there were no significant associations between plasma lipids and lipoprotein cholesterol with aortic total cholesterol and cholesterol esters for any of the groups, the lag phase of conjugated diene formation was inversely associated with both aortic total and esterified cholesterol in the high-oleic olive oil-fed hamsters (r = -0.69, P < 0.05). The present study suggests that mid-oleic sunflower oil reduces risk factors such as lipoprotein cholesterol and oxidative stress associated with early atherosclerosis greater than the typical high-linoleic sunflower oil in hypercholesterolemic hamsters. The high-oleic olive oil not only significantly reduced oxidative stress but also reduced aortic cholesterol ester, a hallmark of early aortic atherosclerosis greater than the typical high-linoleic sunflower oil.  相似文献   

20.

Background

Non-alcoholic fatty liver disease (NAFLD) caused by liver lipid dysregulation is linked to obesity. Somatostatin (SST) and its analogs have been used to treat pediatric hypothalamic obesity. However, the application of such drugs for the treatment of NAFLD has not been evaluated.

Objective

This study aimed to investigate the expression levels of important regulators of hepatic lipid metabolism and the possible effect of the SST analog octreotide on these regulators.

Methods

SD rats were assigned to a control group and a high-fat diet group. Obese rats from the high-fat diet group were further divided into the obese and octreotide-treated groups. The body weight, plasma SST, fasting plasma glucose (FPG), insulin, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and free fatty acid (FFA) levels were measured. Hepatic steatosis was evaluated based on the liver TG content, HE staining and oil red O staining. The SREBP-1c, ACC1, FAS, MTP, apoB and ADRP expression levels in the liver were also determined by RT-PCR, qRT-PCR, western blot or ELISA.

Results

The obese rats induced by high-fat diet expressed more SREBP-1c, FAS and ADRP but less MTP protein in the liver than those of control rats, whereas octreotide intervention reversed these changes and increased the level of apoB protein. Compared to the control group, obese rats showed increased liver ACC1, SREBP-1c and apoB mRNA levels, whereas octreotide-treated rats showed decreased mRNA levels of apoB and SREBP-1c. This was accompanied by increased body weight, liver TG contents, FPG, TG, TC, LDL-C, FFA, insulin and derived homeostatic model assessment (HOMA) values. Octreotide intervention significantly decreased these parameters. Compared to the control group, the obese group showed a decreasing trend on plasma SST levels, which were significantly increased by the octreotide intervention.

Conclusion

Octreotide can ameliorate hepatic steatosis in obese rats, possibly by decreasing hepatic lipogenesis and increasing TG export from hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号