首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周围神经损伤在创伤中较为常见,易造成神经系统部分或全部损伤,从而导致功能丧失和其他神经性疾病.尽管周围神经损伤的治疗效果随着科技的发展有了明显提高,但距离真正的形态和功能重建还相差甚远,神经再生及功能恢复速度缓慢仍是临床治疗的难点.电刺激因使用方便、无创和副作用小等优点越来越受到研究者的青睐,与干细胞联合广泛用于周围神经损伤修复的体外研究.本文论述了电刺激联合干细胞在周围神经损伤修复方面的研究进展,并讨论了其可能的作用机理.特别分析了电刺激联合干细胞在周围神经损伤修复研究中的难点,展望了其发展前景.  相似文献   

2.
感觉、运动或自主神经系统的异常病理活动与疼痛和痉挛等多种神经机能障碍有关。千频交流电(kilohertz frequency alternating current,KHFAC)刺激是一种阻断异常病理活动在外周神经内传导的有效方法,它在缓解相关神经机能障碍方面具有临床应用潜力。KHFAC产生的神经传导阻断受千频信号波形和参数、阻断电极设置和位置以及神经纤维类型和直径等因素影响,具有快速性、可控性、可逆性、局部作用和副作用小的特点。但是,在产生完全传导阻断前,KHFAC首先在靶向神经上激活一簇高频初始放电,这种初始响应可能导致肌肉抽搐或疼痛感。同时,在撤去KHFAC后处于阻断状态的靶向神经需要经历一段时间才能恢复正常传导能力,这是该技术导致的后续效应。目前,关于KHFAC阻断神经传导的生物物理机制假说包括千频信号诱发K+通道激活和Na+通道失活。本文首先介绍了KHFAC技术的电生理实验研究方法和计算模型仿真方法,然后综述目前关于KHFAC作用下神经传导阻断的研究进展,重点论述初始响应特性及消除方法、传导阻断的后续效应、刺激波形和参数的影响、电极设置与位置的影响以及该技术潜在的临床应用,同时归纳KHFAC阻断神经传导的生物物理机制,最后对该技术未来的相关研究进行展望。  相似文献   

3.
Electrical stimulation of cut peripheral nerves at the time of their surgical repair results in an enhancement of axon regeneration. Regeneration of axons through nerve allografts was used to evaluate whether this effect is due to an augmentation of cell autonomous neurotrophin signaling in the axons or signaling from neurotrophins produced in the surrounding environment. In the thy-1-YFP-H mouse, a single 1 h application of electrical stimulation at the time of surgical repair of the cut common fibular nerve results in a significant increase in the proportion of YFP+ dorsal root ganglion neurons, which were immunoreactive for BDNF or trkB, as well as an increase in the length of regenerating axons through allografts from wild type litter mates, both 1 and 2 weeks later. Axon growth through allografts from neurotrophin-4/5 knockout mice or grafts made acellular by repeated cycles of freezing and thawing is normally very poor, but electrical stimulation results in a growth of axons through these grafts, which is similar to that observed through grafts from wild type mice after electrical stimulation. When cut nerves in NT-4/5 knockout mice were electrically stimulated, no enhancement of axon regeneration was found. Electrical stimulation thus produces a potent enhancement of the regeneration of axons in cut peripheral nerves, which is independent of neurotrophin production by cells in their surrounding environment but is dependent on stimulation of trkB and its ligands in the regenerating axons themselves.  相似文献   

4.
The effects of transcranial electrical stimulation of opioid brain structures on regeneration of the rat sciatic nerve after transection and microsurgical suturing of the nerve were investigated. Electrical stimulation was found to accelerate regeneration of motor and sensory fibers of the sciatic nerve. The subject of the involvement of endogenous opioid peptides in regeneration of the peripheral nerves is discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 76–79, January–February, 1990.  相似文献   

5.
Magnetic stimulation of peripheral nerves at distal and proximal sites of the upper and lower extremities and at the midlumbar level were used to elicit cortical somatosensory evoked potentials. Evidence is provided that peripheral nerve trunks, rather than distal receptor afferents, are the anatomical structures stimulated by the electromagnetic fields. Magnetic stimulation of peripheral nerves is considered to be useful for an evaluation of the integrity of proximal nerves, nerve roots and central conduction along sensory pathways. In contrast to electrical nerve stimulation, magnetic stimulation is painless and can be applied to proximal nerves and plexus. By means of proximal nerve stimulation central sensory conduction can be tested even in patients with peripheral nerve lesions or polyneuropathy.  相似文献   

6.
Electrical stimulation of the phrenic nerve in an isolated nerve-diaphragm preparation resulted in the release of phosphatidylinositol phosphodiesterase into the organ bath. The released enzyme was Ca2+-dependent and exhibited two pH optima. The enzyme was released in response to nerve stimulation even in the presence of d-tubocurarine in concentrations that block neuromuscular transmission, and was not therefore released from the muscle as a consequence of its contractile activity. Phosphatidylinositol phosphodiesterase activity was determined in the soluble cytosol fractions prepared from different regions of skeletal muscles and from normal peripheral nerves and nerves that were degenerating after transection. The specific activity of the enzyme in the cytosol from the endplate-rich region of the diaphragm was significantly greater than that in cytosol from either the endplate-free region of the diaphragm or from the phrenic nerve. In degenerating nerve the activity of the enzyme was greater in the distal stump than in the proximal stump at 36 h after nerve section. Possible roles for released phosphatidylinositol phosphodiesterase at the neuromuscular junction are discussed.  相似文献   

7.
Moderate exercise in the form of treadmill training and brief electrical nerve stimulation both enhance axon regeneration after peripheral nerve injury. Different regimens of exercise are required to enhance axon regeneration in male and female mice (Wood et al.: Dev Neurobiol 72 (2012) 688–698), and androgens are suspected to be involved. We treated mice with the androgen receptor blocker, flutamide, during either exercise or electrical stimulation, to evaluate the role of androgen receptor signaling in these activity‐based methods of enhancing axon regeneration. The common fibular (CF) and tibial (TIB) nerves of thy‐1‐YFP‐H mice, in which axons in peripheral nerves are marked by yellow fluorescent protein (YFP), were transected and repaired using CF and TIB nerve grafts harvested from non‐fluorescent donor mice. Silastic capsules filled with flutamide were implanted subcutaneously to release the drug continuously. Exercised mice were treadmill trained 5 days/week for 2 weeks, starting on the third day post‐transection. For electrical stimulation, the sciatic nerve was stimulated continuously for 1 h prior to nerve transection. After 2 weeks, lengths of YFP+ profiles of regenerating axons were measured from harvested nerves. Both exercise and electrical stimulation enhanced axon regeneration, but this enhancement was blocked completely by flutamide treatments. Signaling through androgen receptors is necessary for the enhancing effects of treadmill exercise or electrical stimulation on axon regeneration in cut peripheral nerves. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 531–540, 2014  相似文献   

8.
Scalp somatosensory evoked potentials (SEPs) were recorded after electrical stimulation of the spinal cord in humans. Stimulating electrodes were placed at different vertebral levels of the epidural space over the midline of the posterior aspect of the spinal cord. The wave form of the response differed according to the level of the stimulating epidural electrodes. Cervical stimulation elicited an SEP very similar to that produced by stimulation of upper extremity nerves, e.g., bilateral median nerve SEP, but with a shorter latency. Epidural stimulation of the lower thoracic cord elicited an SEP similar to that produced by stimulation of lower extremity nerves. The results of upper thoracic stimulation appeared as a mixed upper and lower extremity type of SEP. The overall amplitudes of SEPs elicited by the epidural stimulation were higher than SEPs elicited by peripheral nerve stimulation. In 4 patients the CV along the spinal cord was calculated from the difference in latencies of the cortical responses to stimulation at two different vertebral levels. The CVs were in the range of 45–65 m/sec. The method was shown to be promising for future study of spinal cord dysfunctions.  相似文献   

9.
Heart failure (HF) affects over 5 million Americans and is characterized by impairment of cellular cardiac contractile function resulting in reduced ejection fraction in patients. Electrical stimulation such as cardiac resynchronization therapy (CRT) and cardiac contractility modulation (CCM) have shown some success in treating patients with HF. Computer simulations have the potential to help improve such therapy (e.g. suggest optimal lead placement) as well as provide insight into the underlying mechanisms which could be beneficial. However, these myocyte models require a quantitatively accurate excitation-contraction coupling such that the electrical and contraction predictions are correct. While currently there are close to a hundred models describing the detailed electrophysiology of cardiac cells, the majority of cell models do not include the equations to reproduce contractile force or they have been added ad hoc. Here we present a systematic methodology to couple first generation contraction models into electrophysiological models via intracellular calcium and then compare the resulting model predictions to experimental data. This is done by using a post-extrasystolic pacing protocol, which captures essential dynamics of contractile forces. We found that modeling the dynamic intracellular calcium buffers is necessary in order to reproduce the experimental data. Furthermore, we demonstrate that in models the mechanism of the post-extrasystolic potentiation is highly dependent on the calcium released from the Sarcoplasmic Reticulum. Overall this study provides new insights into both specific and general determinants of cellular contractile force and provides a framework for incorporating contraction into electrophysiological models, both of which will be necessary to develop reliable simulations to optimize electrical therapies for HF.  相似文献   

10.
Peripheral nerve lesions lead to nerve degeneration and flaccid paralysis. The first objective in functional rehabilitation of these diseases should be the preservation of the neuro-muscular junction by biological means and following functional electrical stimulation (FES) may restore some function of the paralyzed limb. The combination of biological cells and technical microdevices to biohybrid systems might become a new approach in neural prosthetics research to preserve skeletal muscle function. In this paper, a microdevice for a biohybrid system to interface peripheral nerves after traumatic lesions is presented. The development of the microprobe design and the fabrication technology is described and first experimental results are given and afterwards discussed. The technical microprobe is designed in a way that meets the most important technical requirements: adaptation to the distal nerve stump, suitability to combine the microstructure with a containment for cells, and integrated microelectrodes as information transducers for cell stimulation and monitoring. Micromachining technologies were applied to fabricate a polyimide-based sieve-like microprobe with 19 substrate-integrated ring electrodes and a distributed counter electrode. Monolithic integration of fixation flaps and a three-dimensional shaping technology led to a device that might be adapted to nerve stumps with neurosurgical sutures in the epineurium. First experimental results of the durability of the shaping technology and electrochemical electrode properties were investigated. The three-dimensional shape remained quite stable after sterilization in an autoclave and chronic implantation. Electrode impedance was below 200 kOmega at 1 kHz which ought to permit recording of signals from nerves sprouting through the sieve holes.  相似文献   

11.
Electrical stimulation, which has long been known, has recently been complemented by electromagnetic stimulation. This method is based on the law of induction and employs coils in place of electrodes. The effect of this process is deduced from both the relationship between magnetic and electrical fields and the stimulating effect. A new type of stimulator has been developed from a resonant circuit, thus allowing nerves to be excited with low-frequency pulses up to fusion frequency.  相似文献   

12.
The role of the oviducal nerves during egg-laying in Locusta migratoria has been examined. Section of the oviducal nerves did not inhibit egg-laying in any observable way. Electrical stimulation of the oviducal nerves resulted in a contraction of the common and lower lateral oviducts which propelled ovulated eggs up towards the ovaries. Recordings from oviducal nerves using chronically implanted electrodes showed that electrical activity was low during actual egg-laying, but high at times when egg-laying was not occurring (i.e. during digging behaviour, or following interruption of egg-laying). During these periods of high activity recurrent bursts of action potentials occurred. Similar patterns of electrical activity were recorded in semi-intact preparations using suction electrodes applied to exposed oviducal nerves of locusts which had been interrupted during the process of egg-laying. High frequency bursts of activity were recorded simultaneously from both left and right oviducal nerves.It is concluded that one function of the oviducal nerves is to inhibit egg-laying at inappropriate times, by inducing contractions of the oviducts which propel eggs back towards the ovaries. These nerves therefore provide a physiological basis for part of the adaptive ovipositional activities of locusts.  相似文献   

13.
Air flow larynx resistance changes have been recorded in dogs after electrical stimulation and lesion of the recurrent and vagus cervicalis nerves respectively. Experiments were carried out with glottis in situ and isolated. The effects of the administration of athropine i.v. (0.3 mg/kg) were also studied. Air flow larynx resistance decreased after secting the right recurrent nerves as well as after athropine administration. Electrical stimulation of the central end of the right vagus nerve produced a complex response characterized by an initial apnaea followed by a larynx resistance decrease. After a few seconds the response continued with glottis spasms followed by typical emetic movements. During the emetic movements larynx closed and opened throughout the respiratory cycle, the closing movement being simultaneous with the inspiratory position of the thorax and with minimal values of the intraabdominal pressure. Larynx resistance increased after uni- and bilateral sections of the vagus cervicalis and after the electrical stimulation of the peripheral end of the right vagus cervicalis. According to the present results, the possible existence of a controlling reflex of laryngeal sphincter motility, generated at the bronchopulmonary level, is postulated.  相似文献   

14.
Electrical stimulation of nerve fibers is used as a therapeutic tool to treat neurophysiological disorders. Despite efforts to model the effects of stimulation, its underlying mechanisms remain unclear. Current mechanistic models quantify the effects that the electrical field produces near the fiber but do not capture interactions between action potentials (APs) initiated by stimulus and APs initiated by underlying physiological activity. In this study, we aim to quantify the effects of stimulation frequency and fiber diameter on AP interactions involving collisions and loss of excitability. We constructed a mechanistic model of a myelinated nerve fiber receiving two inputs: the underlying physiological activity at the terminal end of the fiber, and an external stimulus applied to the middle of the fiber. We define conduction reliability as the percentage of physiological APs that make it to the somatic end of the nerve fiber. At low input frequencies, conduction reliability is greater than 95% and decreases with increasing frequency due to an increase in AP interactions. Conduction reliability is less sensitive to fiber diameter and only decreases slightly with increasing fiber diameter. Finally, both the number and type of AP interactions significantly vary with both input frequencies and fiber diameter. Modeling the interactions between APs initiated by stimulus and APs initiated by underlying physiological activity in a nerve fiber opens opportunities towards understanding mechanisms of electrical stimulation therapies.  相似文献   

15.
Glucagon-like peptide (GLP)-1 is secreted rapidly from the intestine postprandially. We therefore investigated its possible neural regulation. With the use of isolated perfused porcine ileum, GLP-1 secretion was measured in response to electrical stimulation of the mixed, perivascular nerve supply and infusions of neuroactive agents alone and in combination with different blocking agents. Electrical nerve stimulation inhibited GLP-1 secretion, an effect abolished by phentolamine. Norepinephrine inhibited secretion, and phentolamine abolished this effect. GLP-1 secretion was stimulated by isoproterenol (abolished by propranolol). Acetylcholine stimulated GLP-1 secretion, and atropine blocked this effect. Dimethylphenylpiperazine stimulated GLP-1 secretion. In chloralose-anesthetized pigs, however, electrical stimulation of the vagal trunks at the level of the diaphragm had no effect on GLP-1 or GLP-2 and weak effects on glucose-dependent insulinotropic peptide and somatostatin secretion, although this elicited a marked atropine-resistant release of the neuropeptide vasoactive intestinal polypeptide to the portal circulation. Thus GLP-1 secretion is inhibited by the sympathetic nerves to the gut and may be stimulated by intrinsic cholinergic nerves, whereas the extrinsic vagal supply has no effect.  相似文献   

16.
To investigate the involvement of vagal afferents in renal nerve release of catecholamines, we compared norepinephrine, dopamine, and epinephrine excretion from innervated and chronically denervated kidneys in the same rat. The difference between innervated and denervated kidney excretion rates was taken as a measure of neurotransmitter release from renal nerves. During saline expansion, norepinephrine excretion from the innervated kidney was not statistically greater than from denervated kidneys. Vagotomy increased norepinephrine release from renal nerves. Thus vagal afferents participated in the suppression of renal sympathetic nerve activity during saline expansion. No significant vagal control of dopamine release by renal nerves was detected under these conditions. Bilateral carotid ligation stimulated renal nerve release of both norepinephrine and dopamine in saline-expanded rats. The effects of carotid ligation and vagotomy were not additive with respect to norepinephrine release by renal nerves. However, the baroreflex-stimulated renal nerve release of dopamine was abolished by vagotomy. Electrical stimulation of the left cervical vagus with a square wave electrical pulse (0.5 ms duration, 10 V, 2 Hz) increased dopamine excretion exclusively from the innervated kidney of hydropenic rats. No significant change in norepinephrine excretion was observed during vagal stimulation. Increased dopamine excretion during vagal stimulation was associated with a larger natriuretic response from the innervated kidney than from its denervated mate (p less than 0.05). We conclude that under appropriate conditions vagal afferents stimulate renal release of dopamine and produce a neurogenically mediated natriuresis.  相似文献   

17.
Characteristics of spinal cord-evoked responses in man   总被引:1,自引:0,他引:1  
The averaged electrical potentials evoked by the stimulation of the peripheral nerves were recorded with surface electrodes over the lumbosacral, lower thoracic and cervical spine and with epidurally placed electrodes in the cervical area. The waveforms of the lumbosacral and cervical spinal cord potentials show similar complexity reflecting peripheral and central generators. The larger negative wave with at least two components is followed by a slower positive deflection. Evoked potentials recorded over the cervical segments of the spinal cord with epidural electrodes are of much higher amplitude and more complex waveform than those recorded with surface electrodes.  相似文献   

18.
To investigate the changes in the wavefront aberrations and pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. Seven eyes of seven cats were studied under general anesthesia. Trains of monophasic pulses (current, 0.1 to 1.0 mA; duration, 0.5 ms/phase; frequency, 5 to 40 Hz) were applied to the lateral or medial branch of the short ciliary nerve near the posterior pole of the eye. A pair of electrodes was hooked onto one or both branch of the short ciliary nerve. The electrodes were placed about 5 mm from the scleral surface. The wavefront aberrations were recorded continuously for 2 seconds before, 8 seconds during, and for 20 seconds after the electrical stimulation. The pupillary images were simultaneously recorded during the stimulation period. Both the wavefront aberrations and the pupillary images were obtained 10 times/sec with a custom-built wavefront aberrometer. The maximum accommodative amplitude was 1.19 diopters (D) produced by electrical stimulation of the short ciliary nerves. The latency of the accommodative changes was very short, and the accommodative level gradually increased up to 4 seconds and reached a plateau. When only one branch of the ciliary nerve was stimulated, the pupil dilated asymmetrically, and the oblique astigmatism and one of the asymmetrical wavefront terms was also altered. Our results showed that the wavefront aberrations and pupillary dilations can be measured simultaneously and serially with a compact wavefront aberrometer. The asymmetric pupil dilation and asymmetric changes of the wavefront aberrations suggest that each branch of the ciliary nerve innervates specific segments of the ciliary muscle and dilator muscle of the pupil.  相似文献   

19.
Peripheral nerve injury and repair is a complex and dynamic process including the outgrowth of newborn axons, the selecting targeting of regenerating axons and their remyelination. The whole process is finely modulated and affected by various regeneration-associated factors and other molecules cooperating with them. The emphasis of current studies aims to improve nerve repair and functional recovery by coordinating the activity of each member involved in the teamwork of nerve regeneration. The neural cells are highly polarized, most of which develop various subcellular compartments including the cell body and processes, respectively participating in the consecutive synthesis and delivery of genes and proteins. Some RNAs synthesized at perikaryon are selectively transported to the distal end and translated into proteins locally. Some proteins choose the way to the distal part of the growing process and play biological functions there. Changes of the microenvironment could induce intracellular biosynthesis at the nucleus and processes thereby to impact the network between cells. Although the route of the specific trafficking of genes and proteins is only partly revealed, it is a feasible means to facilitate negotiation between the nucleus and the distal reaches in this way to assist nerve repair. Electrical stimulation as a convenient technique was applied extensively to clinical therapies on nervous diseases and proved to produce marked effects. But the underlying mechanism of electrical stimulation on nerve injury and repair is poorly understood. We speculate that electrical stimulation therapies take part in nerve degeneration and regeneration not only by stimulating the neural cells to synthesize regeneration-associated genes and proteins, but also by accelerating their transport and promote the localized genes translation at the lesion site.  相似文献   

20.
Electrical stimulation of rat sensory nerves produces cutaneous vasodilation and plasma protein extravasation, a phenomenon termed "neurogenic inflammation". Rat skin on the dorsum of the paw developed neurogenic inflammation after electrical stimulation of the saphenous nerve. In tissue sections, the extravasation of the supravital dye monastral blue B identified permeable vessels. Mast cells were identified by toluidine blue stain. Permeable vessels were significantly more dense in the superficial 120 microns of the dermis than in the deeper dermis, whereas mast cells were significantly more frequent in the deeper dermis. The relationships between nociceptive sensory nerve fibers, permeable vessels, and mast cells were examined by indirect immunohistochemistry for calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and substance P (SP). CGRP-, NKA-, and SP-containing nerves densely innervated the superficial dermis and appeared to innervate the vessels that became permeable during neurogenic inflammation. In contrast, mast cells were not associated with either permeable vessels or nerve fibers. These data suggest that electrical stimulation of rat sensory nerves produces vascular permeability by inducing the release of neuropeptides that may directly stimulate the superficial vascular bed. Mast cells may not be involved in this stage of cutaneous neurogenic inflammation in rat skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号