首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single geniculocortical axons were recorded in the cortical white matter of kittens and adult cats by using micropipettes filled with horseradish peroxidase (HRP). Of 41 axons recovered in 4-5 week old kittens, three well-filled axons arborized in area 17; the remainder were incomplete or arborized in area 18. One axon had Y-like physiological properties, two were X-like. They were recovered from two 34-day-old kittens. All three axons formed clustered arborizations, mainly in layer 4A. Electron microscopic (EM) analysis of 50 boutons from kitten and 38 boutons from adult controls revealed that the boutons from kitten made synapses more frequently on spines (91% of targets) than did the boutons from the adult (71%). One X-like axon in kitten also had a collateral projection that made synapses in layer 1; this has not been seen in adult cats. In overall extent, the axons from kitten fell within the adult range.  相似文献   

2.
We imaged axons in layer (L) 1 of the mouse barrel cortex in vivo. Axons from thalamus and L2/3/5, or L6 pyramidal cells were identified based on their distinct morphologies. Their branching patterns and sizes were stable over times of months. However, axonal branches and boutons displayed cell type-specific rearrangements. Structural plasticity in thalamocortical afferents was mostly due to elongation and retraction of branches (range, 1-150 microm over 4 days; approximately 5% of total axonal length), while the majority of boutons persisted for up to 9 months (persistence over 1 month approximately 85%). In contrast, L6 axon terminaux boutons were highly plastic (persistence over 1 month approximately 40 %), and other intracortical axon boutons showed intermediate levels of plasticity. Retrospective electron microscopy revealed that new boutons make synapses. Our data suggest that structural plasticity of axonal branches and boutons contributes to the remodeling of specific functional circuits.  相似文献   

3.
In Drosophila, the type I motor terminals innervating the larval ventral longitudinal muscle fibers 6 and 7 have been the most popular preparation for combining synaptic studies with genetics. We have further characterized the normal morphological and physiological properties of these motor terminals and the influence of muscle size on terminal morphology. Using dye-injection and physiological techniques, we show that the two axons supplying these terminals have different innervation patterns: axon 1 innervates only muscle fibers 6 and 7, whereas axon 2 innervates all of the ventral longitudinal muscle fibers. This difference in innervation pattern allows the two axons to be reliably identified. The terminals formed by axons 1 and 2 on muscle fibers 6 and 7 have the same number of branches; however, axon 2 terminals are approximately 30% longer than axon 1 terminals, resulting in a corresponding greater number of boutons for axon 2. The axon 1 boutons are approximately 30% wider than the axon 2 boutons. The excitatory postsynaptic potential (EPSP) produced by axon 1 is generally smaller than that produced by axon 2, although the size distributions show considerable overlap. Consistent with vertebrate studies, there is a correlation between muscle fiber size and terminal size. For a single axon, terminal area and length, the number of terminal branches, and the number of boutons are all correlated with muscle fiber size, but bouton size is not. During prolonged repetitive stimulation, axon 2 motor terminals show synaptic depression, whereas axon 1 EPSPs facilitate. The response to repetitive stimulation appears to be similar at all motor terminals of an axon.  相似文献   

4.
Carter  D. A.  Bray  G. M.  Aguayo  A. J. 《Brain Cell Biology》1998,27(3):187-196
Regenerated retinal ganglion cell (RGC) axons can re-form functional synapses with target neurons in the superior colliculus (SC). Because preterminal axon branching determines the size, shape and density of innervation fields, we investigated the branching patterns and bouton formation of individual RGC axons that had regrown along peripheral nerve (PN) grafts to the SC. Within the superficial layers of the SC, the regenerated axons formed terminal arbors with average numbers of terminal boutons that were similar to the controls. However, axonal branches were shorter than normal so that the mean area of the regenerated arbors was nearly one-tenth that of control arbors and the resulting fields of innervation contained greater than normal numbers of synapses concentrated in small areas of the target. Our results have delineated a critical defect in the reconstitution of retino-collicular circuitry in adult mammals: the failure of terminal RGC branches to expand appropriately. Because recent studies have documented that brain-derived neurotrophic factor (BDNF) can specifically lengthen RGC axonal branches not only during development in the SC but also within the adult retina after axotomy, the present quantitative studies should facilitate experimental attempts to correct this deficit of the regenerative response. © 1998 Chapman and Hall  相似文献   

5.
Javaherian A  Cline HT 《Neuron》2005,45(4):505-512
We have used in vivo time-lapse two-photon imaging of single motor neuron axons labeled with GFP combined with labeling of presynaptic vesicle clusters and postsynaptic acetylcholine receptors in Xenopus laevis tadpoles to determine the dynamic rearrangement of individual axon branches and synaptogenesis during motor axon arbor development. Control GFP-labeled axons are highly dynamic during the period when axon arbors are elaborating. Axon branches emerge from sites of synaptic vesicle clusters. These data indicate that motor neuron axon elaboration and synaptogenesis are concurrent and iterative. We tested the role of Candidate Plasticity Gene 15 (CPG15, also known as Neuritin), an activity-regulated gene that is expressed in the developing motor neurons in this process. CPG15 expression enhances the development of motor neuron axon arbors by promoting neuromuscular synaptogenesis and by increasing the addition of new axon branches.  相似文献   

6.
The neuromuscular system of Drosophila has been widely used in studies on synaptic development. In the embryo, the cellular components of this model system are well established, with uniquely identified motoneurons displaying specific connectivity with distinct muscles. Such knowledge is essential to analyzing axon guidance and synaptic matching mechanisms with single-cell resolution. In contrast, to date the cellular identities of the larval neuromuscular synapses are hardly established. It is not known whether synaptic connections seen in the embryo persist, nor is it known how individual motor endings may differentiate through the larval stages. In this study, we combine single-cell dye labeling of individual synaptic boutons and counterstaining of the entire nervous system to characterize the synaptic partners and bouton differentiation of the 30 motoneuron axons from four nerve branches (ISN, SNa, SNb, and SNd). We also show the cell body locations of 4 larval motoneurons (RP3, RP5, V, and MN13-Ib) and the types of innervation they develop. Our observations support the following: (1) Only 1 motoneuron axon of a given bouton type innervates a single muscle, while up to 4 motoneuron axons of different bouton types can innervate the same muscle. (2) The type of boutons which each motoneuron axon forms is likely influenced by cell-autonomous factors. The data offer a basis for studying the properties of synaptic differentiation, maintenance, and plasticity with a high cellular resolution.  相似文献   

7.
Y Manor  C Koch    I Segev 《Biophysical journal》1991,60(6):1424-1437
Multiple successive geometrical inhomogeneities, such as extensive arborization and terminal varicosities, are usual characteristics of axons. Near such regions the velocity of the action potential (AP) changes. This study uses AXONTREE, a modeling tool developed in the companion paper for two purposes: (a) to gain insights into the consequence of these irregularities for the propagation delay along axons, and (b) to simulate the propagation of APs along a reconstructed axon from a cortical cell, taking into account information concerning the distribution of boutons (release sites) along such axons to estimate the distribution of arrival times of APs to the axons release sites. We used Hodgkin and Huxley (1952) like membrane properties at 20 degrees C. Focusing on the propagation delay which results from geometrical changes along the axon (and not from the actual diameters or length of the axon), the main results are: (a) the propagation delay at a region of a single geometrical change (a step change in axon diameter or a branch point) is in the order of a few tenths of a millisecond. This delay critically depends on the kinetics and the density of the excitable channels; (b) as a general rule, the lag imposed on the AP propagation at a region with a geometrical ratio GR greater than 1 is larger than the lead obtained at a region with a reciprocal of that GR value; (c) when the electronic distance between two successive geometrical changes (Xdis) is small, the delay is not the sum of the individual delays at each geometrical change, when isolated. When both geometrical changes are with GR greater than 1 or both with GR less than 1, this delay is supralinear (larger than the sum of individual delays). The two other combinations yield a sublinear delay; and (d) in a varicose axon, where the diameter changes frequently from thin to thick and back to thin, the propagation velocity may be slower than the velocity along a uniform axon with the thin diameter. Finally, we computed propagation delays along a morphologically characterized axon from layer V of the somatosensory cortex of the cat. This axon projects mainly to area 4 but also sends collaterals to areas 3b and 3a. The model predicts that, for this axon, areas 3a, 3b, and the proximal part of area 4 are activated approximately 2 ms before the activation of the distal part of area 4.  相似文献   

8.
The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.  相似文献   

9.
Lambe EK  Aghajanian GK 《Neuron》2003,40(1):139-150
In vivo, thalamocortical axons are susceptible to the generation of terminal spikes which antidromically promote bursting in the thalamus. Although neurotransmitters could elicit such ectopic action potentials at thalamocortical boutons, this hypothesis has never been confirmed. Prefrontal cortex is the cortical area most implicated in arousal and is innervated by thalamic neurons that are unusual since they burst rhythmically during waking. We show that a neurotransmitter critical for alertness, hypocretin (orexin), directly excites prefrontal thalamocortical synapses in acute slice. This TTX-sensitive activation of thalamic axons was demonstrated electrophysiologically and by two-photon sampling of calcium transients at single spines in apposition to thalamic boutons anterogradely labeled in vivo. Spines receiving these long-range projections constituted a unique population in terms of the presynaptic excitatory action of hypocretin. By this mechanism, the hypocretin projection to prefrontal cortex may play a larger role in prefrontal or "executive" aspects of alertness and attention than previously anticipated.  相似文献   

10.
This study investigated electrophysiological and histological changes as well as alterations of myelin relevant proteins of descending motor tracts in rat pups. Motor‐evoked potentials (MEPs) represent descending conducting responses following stimulation of the motor cortex to responses being elicited from the lower extremities. MEP responses were recorded biweekly from postnatal (PN) week 1 to week 9 (adult). MEP latencies in PN week 1 rats averaged 23.7 ms and became shorter during early maturation, stabilizing at 6.6 ms at PN week 4. During maturation, the conduction velocity (CV) increased from 2.8 ± 0.2 at PN week 1 to 35.2 ± 3.1 mm/ms at PN week 8. Histology of the spinal cord and sciatic nerves revealed progressive axonal myelination. Expression of the oligodendrocyte precursor markers PDGFRα and NG2 were downregulated in spinal cords, and myelin‐relevant proteins such as GalC, CNP, and MBP increased during maturation. Oligodendrocyte‐lineage markers Olig2 and MOG, expressed in myelinated oligodendrocytes, peaked at PN week 3 and were downregulated thereafter. A similar expression pattern was observed in neurofilament M/H subunits that were extensively phosphorylated in adult spinal cords but not in neonatal spinal cords, suggesting an increase in axon diameter and myelin formation. Ultrastructural morphology in the ventrolateral funiculus (VLF) showed axon myelination of the VLF axons (99.3%) at PN week 2, while 44.6% were sheathed at PN week 1. Increased axon diameter and myelin thickness in the VLF and sciatic nerves were highly correlated to the CV (rs > 0.95). This suggests that MEPs could be a predicator of morphological maturity of myelinated axons in descending motor tracts. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 713–722, 2013  相似文献   

11.
Regulation of cortical dendrite development by Slit-Robo interactions.   总被引:9,自引:0,他引:9  
Slit proteins have previously been shown to regulate axon guidance, branching, and neural migration. Here we report that, in addition to acting as a chemorepellant for cortical axons, Slit1 regulates dendritic development. Slit1 is expressed in the developing cortex, and exposure to Slit1 leads to increased dendritic growth and branching. Conversely, inhibition of Slit-Robo interactions by Robo-Fc fusion proteins or by a dominant-negative Robo attenuates dendritic branching. Stimulation of neurons transfected with a Met-Robo chimeric receptor with Hepatocyte growth factor leads to a robust induction of dendritic growth and branching, suggesting that Robo-mediated signaling is sufficient to induce dendritic remodeling. These experiments indicate that Slit-Robo interactions may exert a significant influence over the specification of cortical neuron morphology by regulating both axon guidance and dendritic patterning.  相似文献   

12.
Many lines of evidence indicate that postsynaptic dendritic spines are plastic during development and largely stable in adulthood. It remains unclear to what degree presynaptic axonal terminals undergo changes in the developing and mature cortex. In this study, we examined the formation and elimination of fluorescently‐labeled axonal boutons in the living mouse barrel cortex with transcranial two‐photon microscopy. We found that the turnover of axonal boutons was significantly higher in 3‐week‐old young mice than in adult mice (older than 3 months). There was a slight but significant net loss of axonal boutons in mice from 1 to 2 months of age. In both young and adult barrel cortex, axonal boutons existed for at least 1 week were less likely to be eliminated than those recently‐formed boutons. In adulthood, 80% of axonal boutons persisted over 12 months and enriched sensory experience caused a slight but not significant increase in the turnover of axonal boutons over 2–4 weeks. Thus, similar to postsynaptic dendritic spines, presynaptic axonal boutons show remarkable stability after development ends. This long‐term stability of synaptic connections is likely important for reliable sensory processing in the mature somatosensory cortex. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 252–261, 2016  相似文献   

13.
D D O'Leary  T Terashima 《Neuron》1988,1(10):901-910
We are studying how axons branch in vivo. Individual cortical neurons send axons to both the spinal cord and the basilar pons. Here we show that the corticopontine projection develops by an interstitial budding of collaterals from parent axons rather than a reported mechanism of axon branching, growth cone bifurcation. This mechanism is used regardless of whether the parent axon's postpontine segment, which forms the corticospinal projection, is permanent (motor cortex) or transient (visual cortex). Budding occurs days after the parent axons grow spinally past the pons, accounting for the "waiting period" reported in this system in contrast to an alternative explanation that the growth cones pause outside of their target. Timing and location of pontine collateral budding vary with cortical origin of the parent axon and are correlated with the temporal ordering of axon arrival.  相似文献   

14.
MacColl G  Bouloux P  Quinton R 《Neuron》2002,34(5):675-678
Three new studies into the function of human anosmin-1 and related proteins in C. elegans and rodents show that these influence axon branching and axon targeting. The rodent anosmin appears to work at two stages of development, initially promoting axon outgrowth from the olfactory bulb and then stimulating branching from axons into the olfactory cortex. CeKal-1 further influences morphogenesis, and, as the human and nematode anosmins are functionally conserved, these studies provide insights into the pathogenesis of Kallmann syndrome (KS).  相似文献   

15.
Developing axons form extensive branches to make synaptic contacts with their target cells. Despite the important role of axon branching in neural circuit formation, its underlying molecular mechanism is still largely unknown. In this study, we investigated the involvement of Semaphorin7A (Sema7A) in thalamocortical (TC) axon branching. In situ hybridization demonstrated that sema7a was expressed specifically in layer 4, the TC recipient layer, when TC axons form extensive arbors. A similar protein expression pattern was observed by immunohistochemistry with an anti-Sema7A antibody. The effect of Sema7A on axon branching was investigated in dissociated cell cultures from embryonic rat thalamus. TC axon branching increased dramatically on Sema7A-coated dishes. We further studied the activity of Sema7A in vivo using loss- and gain-of-function analyses. The number of vesicular glutamate transporter 2-positive puncta was markedly reduced in the Sema7A-deficient cortex. In contrast, their number increased significantly when Sema7A was over-expressed in layer 4 cells by in utero electroporation. Taken together, these findings suggest that Sema7A acts as a positive regulator for TC axon branching and/or pre-synaptic puncta formation.  相似文献   

16.
1. The average volumes of dendritic domaines of relay neurons (P-neurons) were calculated and the quantitative relations to the neuronal elements situated in this area were investigated. Likewise we carried out measurements and calculations at the terminal parts of afferent axons, to find a conception concerning possible contacts between axons and P-neurons considering quantitative aspects. 2. The dendrites of one P-neuron are distributed in an area of about 0,008 mum3. In this area there are located somata of at least 120 other P-neurons and dendrites of altogether about 900 P-neurons. 3. The type-1-axons (cortical afferents) run almost linearly in the longitudinal system of the CGLd. Traversing a distance adequate to the diameter of a P-neuron (250 mum) the dendrites of 150 to 170 P-neurons may cross the course of one axon. At this distance the axon, however, has just set up about 50 boutons, thus synaptic contacts may be established with one third at most of the existing cells. A type-1-axon that is bifurcating in the entrance area into the CGLd is altogether of about 2000 mum in length and is able to develop about 420 presynaptic profiles. 4. The type-2-axons (retinal afferents) show a distinct terminal branching zone. The Golgi-Kopsch impregnated terminals of type-2a-axons are distributed in a space of 147000 mum3 capacity, the corresponding terminals of type-2b-axons in a space of 443000 mum3. The type-2a-axons having an average number of 23 boutons, may contact the dendritic branching zones of 25 P-neurons. There is a good reason to assume that type-2b-axons are in contact also with terminal dendritic parts of P-neurons. Thus the number of P-cells, which spread their dendrites into the terminal branching zone of one type-2b-axon may amount to 540. The average number of boutons of one type-2b-terminal, however, is only about 160. This means that synaptic contacts may be developed to the P-neurons-dendrites not exceeding 30% of them. 5. Various aspects of divergence of axon terminals in the albino rat's CGLd are discussed.  相似文献   

17.
The innervation of ventral longitudinal abdominal muscles (muscles 6, 7, 12, and 13) of third-instar Drosophila larvae was investigated with Nomarski, confocal, and electron microscopy to define the ultrastructural features of synapse-bearing terminals. As shown by previous workers, muscles 6 and 7 receive in most abdominal segments “Type I” endings, which are restricted in distribution and possess relatively prominent periodic terminal enlargements (“boutons”); whereas muscles 12 and 13 have in addition “Type II” terminals, which are more widely distributed and have smaller “boutons.” Serial sectioning of the Type I innervation of muscles 6 and 7 showed that two axons with distinctive endings contribute to it. One axon (termed Axon 1) has somewhat larger boutons, containing numerous synapses and presynaptic dense bodies (putative active zones for transmitter release). This axon also has more numerous intraterminal mitochondria, and a profuse subsynaptic reticulum around or under the synaptic boutons. The second axon (Axon 2) provides somewhat smaller boutons, with fewer synapses and dense bodies per bouton, fewer intraterminal mitochondria, and less-developed subsynaptic reticulum. Both axons contain clear synaptic vesicles, with occasional large dense vesicles. Approximately 800 synapses are provided by Axon 1 to muscles 6 and 7, and approximately 250 synapses are provided by Axon 2. In muscles 12 and 13, endings with predominantly clear synaptic vesicles, generally similar to the Type I endings of muscles 6 and 7, were found, along with another type of ending containing predominantly dense-cored vesicles, with small clusters of clear synaptic vesicles. This second type of ending was found most frequently in muscle 12, and probably corresponds to a subset of the “Type II” endings seen in the light microscope. Type I endings are thought to generate the ?fast’? and ?slow’? junctional potentials seen in electrophysiological recordings, whereas the physiological actions of Type II endings are presently not known. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Netrin-1 influences retinal ganglion cell (RGC) axon pathfinding and also participates in the branching and synaptic differentiation of mature RGC axons at their target. To investigate whether netrin also serves as an early target recognition signal in the brain, we examined the dynamic behavior of Xenopus RGC axons soon after they innervate the optic tectum. Time-lapse confocal microscopy imaging of RGC axons expressing enhanced yellow fluorescent protein demonstrated that netrin-1 is involved in early axon branching, as recombinant netrin-1 halted further advancement of growth cones into the tectum and induced back branching. RGC growth cones exhibited differential responses to netrin-1 that depended on the degree of differentiation of the axon and the developmental stage of the tadpole. Netrin-1 decreased the total number of branches on newly arrived RGC growth cones at the target, but increased the dynamic branching of more mature arbors at the later developmental stage. To further explore the response of axonal growth cones to netrin, Xenopus RGC axons were followed in culture by time-lapse imaging. Exposure to netrin-1 rapidly increased the forward advancement of the axon and decreased the size and expanse of the growth cone, while also inducing back branching. Taken together, the differential in vivo and in vitro responses to netrin-1 suggest that netrin alone is not sufficient to induce the cessation of growth cone advancement in the absence of a target but can independently modulate axon branching. Collectively, our findings reveal a novel role for netrin on RGC axon branch initiation as growth cones innervate their target.  相似文献   

19.
Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.  相似文献   

20.
The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo (Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons (up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号