首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The procedure developed for purification of the N-ethylmaleimide-activated microsomal glutathione transferase was applied successfully to isolation of this same enzyme in unactivated form. The microsomal glutathione transferases, the unactivated and activated forms, were shown to be identical in terms of molecular weight, immunochemical properties, and amino acid composition. In addition the microsomal glutathione transferase purified in unactivated form could be activated 15-fold with N-ethylmaleimide to give the same specific activity with 1-chloro-2,4-dinitrobenzene as that observed for the enzyme isolated in activated form. This activation involved the binding of one molecule N-ethylmaleimide to the single cysteine residue present in each polypeptide chain of the enzyme, as shown by amino acid analysis, determination of sulfhydryl groups by 2,2'-dithiopyridyl and binding of radioactive N-ethylmaleimide. Except for the presence of only a single cysteine residue and the total absence of tryptophan, the amino acid composition of the microsomal glutathione transferase is not remarkable. The contents of aspartic acid/asparagine + glutamic acid/glutamine, of basic amino acids, and of hydrophobic amino acids are 15%, 12% and 54% respectively. The isoelectric point of the enzyme is 10.1. Microsomal glutathione transferase conjugates a wide range of substrates with glutathione and also demonstrates glutathione peroxidase activity with cumene hydroperoxide, suggesting that it may be involved in preventing lipid peroxidation. Of the nine substrates identified here, the enzymatic activity towards only two, 1-chloro-2,4-dinitrobenzene and cumene hydroperoxide, could be increased by treatment with N-ethylmaleimide. This treatment results in increases in both the apparent Km values and V values for 1-chloro-2,4-dinitrobenzene and cumene hydroperoxide. Thus, although clearly distinct from the cytosolic glutathione transferases, the microsomal enzyme shares certain properties with these soluble enzymes, including a relative abundance, a high isoelectric point and a broad substrate specificity. The exact role of the microsomal glutathione transferase in drug metabolism, as well as other possible functions, remains to be established.  相似文献   

2.
The substrate specificity of rat liver microsomal glutathione transferase toward glutathione has been examined in a systematic manner. Out of a glycyl-modified and eight gamma-glutamyl-modified glutathione analogues, it was found that four (glutaryl-L-Cys-Gly, alpha-L-Glu-L-Cys-Gly, alpha-D-Glu-L-Cys-Gly, and gamma-L-Glu-L-Cys-beta-Ala) function as substrates. The kinetic parameters for three of these substrates (the alpha-D-Glu-L-Cys-Gly analogue gave very low activity) were compared with those of GSH with both unactivated and the N-ethylmaleimide-activated microsomal glutathione transferase. The alpha-L-Glu-L-Cys-Gly analogue is similar to GSH in that it has a higher kcat (6.9 versus 0.6 s-1) value with the activated enzyme compared with the unactivated enzyme but displays a high Km (6 versus 11 mM) with both forms. Glutaryl-L-Cys-Gly, in contrast, exhibited a similar kcat (8.9 versus 6.7 s-1) with the N-ethylmaleimide-treated enzyme but retains a higher Km value (50 versus 15 mM). Thus, the alpha-amino group of the glutamyl residue in GSH is important for the activity of the activated microsomal glutathione transferase. These observations were quantitated by analyzing the changes in the Gibbs free energy of binding calculated from the changes in kcat/Km values, comparing the analogues to GSH and each other. It is estimated that the binding energy of the alpha-amino group of the glutamyl residue in GSH contributes 9.7 kJ/mol to catalysis by the activated enzyme, whereas the corresponding value for the unactivated enzyme is 3.2 kJ/mol. The importance of the acidic functions in glutathione is also evident as shown by the lack of activity with 4-aminobutyric acid-L-Cys-Gly and the low kcat/Km values with gamma-L-Glu-L-Cys-beta-Ala (0.03 and 0.01 mM-1s-1 for unactivated and activated enzyme, respectively). Utilization of binding energy from a correctly positioned carboxyl group in the glycine residue (10 and 17 kJ/mol for unactivated and activated enzyme, respectively) therefore also appears to be required for optimal activity and activation. A conformational change in the microsomal glutathione transferase upon treatment with N-ethylmaleimide or trypsin, which allows utilization of binding energy from the alpha-amino group of GSH as well as the glycine carboxyl in catalysis, is suggested to account for at least part of the activation of the enzyme.  相似文献   

3.
The substrate specificities of 15 cytosolic glutathione transferases from rat, mouse and man have been explored by use of a homologous series of 4-hydroxyalkenals, extending from 4-hydroxypentenal to 4-hydroxypentadecenal. Rat glutathione transferase 8-8 is exceptionally active with the whole range of 4-hydroxyalkenals, from C5 to C15. Rat transferase 1-1, although more than 10-fold less efficient than transferase 8-8, is the second most active transferase with the longest chain length substrates. Other enzyme forms showing high activities with these substrates are rat transferase 4-4 and human transferase mu. The specificity constants, kcat./Km, for the various enzymes have been determined with the 4-hydroxyalkenals. From these constants the incremental Gibbs free energy of binding to the enzyme has been calculated for the homologous substrates. The enzymes responded differently to changes in the length of the hydrocarbon side chain and could be divided into three groups. All glutathione transferases displayed increased binding energy in response to increased hydrophobicity of the substrate. For some of the enzymes, steric limitations of the active site appear to counteract the increase in binding strength afforded by increased chain length of the substrate. Comparison of the activities with 4-hydroxyalkenals and other activated alkenes provides information about the active-site properties of certain glutathione transferases. The results show that the ensemble of glutathione transferases in a given species may serve an important physiological role in the conjugation of the whole range of 4-hydroxyalkenals. In view of its high catalytic efficiency with all the homologues, rat glutathione transferase 8-8 appears to have evolved specifically to serve in the detoxication of these reactive compounds of oxidative metabolism.  相似文献   

4.
The steady-state kinetics of the dimeric glutathione transferases deviate from Michaelis-Menten kinetics, but have hyperbolic binding isotherms for substrates and products of the enzymic reaction. The possibility of subunit interactions during catalysis as an explanation for the rate behaviour was investigated by use of rat isoenzymes composed of subunits 1, 2, 3 and 4, which have distinct substrate specificities. The kinetic parameter kcat./Km was determined with 1-chloro-2,4-dinitrobenzene, 4-hydroxyalk-2-enals, ethacrynic acid and trans-4-phenylbut-3-en-2-one as electrophilic substrates for six isoenzymes: rat glutathione transferases 1-1, 1-2, 2-2, 3-3, 3-4 and 4-4. It was found that the kcat./Km values for the heterodimeric transferases 1-2 and 3-4 could be predicted from the kcat./Km values of the corresponding homodimers. Likewise, the initial velocities determined with transferases 3-3, 3-4 and 4-4 at different degrees of saturation with glutathione and 1-chloro-2,4-dinitrobenzene demonstrated that the kinetic properties of the subunits are additive. These results show that the subunits of glutathione transferase are kinetically independent.  相似文献   

5.
Mouse liver microsomal glutathione transferase was purified in an N-ethylmaleimide-activated as well as an unactivated form. The enzyme had a molecular mass of 17 kDa and a pI of 8.8. It showed cross-reactivity with antibodies raised against rat liver microsomal glutathione transferase, but not with any of the available antisera raised against cytosolic glutathione transferases. The fully N-ethylmaleimide-activated enzyme could be further activated 1.5-fold by inclusion of 1 microM-bromosulphophthalein in the assay system. The latter effect was reversible, which was not the case for the N-ethylmaleimide activation. At 20 microM-bromosulphophthalein the activated microsomal glutathione transferase was strongly inhibited, while the unactivated form was activated 2.5-fold. Inhibitors of the microsomal glutathione transferase from mouse liver showed either about the same I50 values for the activated and the unactivated form of the enzyme, or significantly lower I50 values for the activated form compared with the unactivated form. The low I50 values and the steep slope of the activity-versus-inhibitor-concentration curves for the latter group of inhibitors tested on the activated enzyme indicate a co-operative effect involving conversion of activated enzyme into the unactivated form, as well as conventional inhibition of the enzyme.  相似文献   

6.
An important aspect of the catalytic mechanism of microsomal glutathione transferase (MGST1) is the activation of the thiol of bound glutathione (GSH). GSH binding to MGST1 as measured by thiolate anion formation, proton release, and Meisenheimer complex formation is a slow process that can be described by a rapid binding step (K(GSH)d = 47 +/- 7 mM) of the peptide followed by slow deprotonation (k2 = 0.42 +/- 0.03 s(-1). Release of the GSH thiolate anion is very slow (apparent first-order rate k(-2) = 0.0006 +/- 0.00002 s(-)(1)) and thus explains the overall tight binding of GSH. It has been known for some time that the turnover (kcat) of MGST1 does not correlate well with the chemical reactivity of the electrophilic substrate. The steady-state kinetic parameters determined for GSH and 1-chloro-2,4-dinitrobenzene (CDNB) are consistent with thiolate anion formation (k2) being largely rate-determining in enzyme turnover (kcat = 0.26 +/- 0.07 s(-1). Thus, the chemical step of thiolate addition is not rate-limiting and can be studied as a burst of product formation on reaction of halo-nitroarene electrophiles with the E.GS- complex. The saturation behavior of the concentration dependence of the product burst with CDNB indicates that the reaction occurs in a two-step process that is characterized by rapid equilibrium binding ( = 0.53 +/- 0.08 mM) to the E.GS- complex and a relatively fast chemical reaction with the thiolate (k3 = 500 +/- 40 s(-1). In a series of substrate analogues, it is observed that log k3 is linearly related (rho value 3.5 +/- 0.3) to second substrate reactivity as described by Hammett sigma- values demonstrating a strong dependence on chemical reactivity that is similar to the nonenzymatic reaction (rho = 3.4). Microsomal glutathione transferase 1 displays the unusual property of being activated by sulfhydryl reagents. When the enzyme is activated by N-ethylmaleimide, the rate of thiolate anion formation is greatly enhanced, demonstrating for the first time the specific step that is activated. This result explains earlier observations that the enzyme is activated only with more reactive substrates. Taken together, the observations show that the kinetic mechanism of MGST1 can be described by slow GSH binding/thiolate formation followed by a chemical step that depends on the reactivity of the electrophilic substrate. As the chemical reactivity of the electrophile becomes lower the rate-determining step shifts from thiolate formation to the chemical reaction.  相似文献   

7.
A series of p- and m-substituted phenols were examined for their effect on the cyclooxygenase activity of prostaglandin H synthase in 0.1 M phosphate buffer at pH 8.0 and 25.0 +/- 0.1 degrees C. A biphasic response was observed. At low concentrations phenols stimulate, but at higher concentrations inhibit, cyclooxygenase activity. Both enhancement and inhibition are increased by phenolic substituents which are electron-donating, quantified by Hammett sigma constants, and hydrophobic, quantified by Hantsch tau constants. The same series of substituted phenols was also reacted with compound II of prostaglandin H synthase at 4.0 +/- 0.5 degrees C. The compound II data fit the Hammett rho sigma equation; no hydrophobicity factors are required. Phenols inhibit cyclooxygenase activity by interfering with the binding of arachidonic acid to compound I and by competing directly with arachidonic acid as reducing substrates for compound I. Phenols stimulate cyclooxygenase activity by acting as reducing substrates for compound II, thereby accelerating the peroxidatic cycle. Phenols also protect the enzyme from self-catalyzed inactivation, most likely by removing the free radical of prostaglandin G2 by reducing it to prostaglandin G2. Kinetic parameters Km and kcat for cyclooxygenase activity were determined in the presence of phenols. Identical values of Km (15.3 +/- 0.5 mM) and kcat (89 +/- 2 s-1) were obtained regardless of which phenol was employed. Therefore these represent the true Km and kcat values for cyclooxygenase activity.  相似文献   

8.
Trypsin catalyzed hydrolysis of seven new chromogenic arginine substrates, N alpha-benzyloxycarbonyl-L-arginine-3-nitro-5X-anilide (X = H, CF3, SO2CH3, F, Cl, Br and I) were studied. These substrates are suitable for studying electronic effects on trypsin activity. The Km and kcat values for the hydrolysis of each substrate were determined and found to differ significantly for the various substrates. The Hammett plot of the catalytic rate constants gave a straight line with a negative rho value (-0.82) thus indicating that electron withdrawing substituents retard the trypsin catalyzed hydrolysis of the new anilide substrates.  相似文献   

9.
Glutathione transferases exhibit both isomerase and transferase activity. The acceptance of steroids as substrates for or inhibitors of these activities was studied using a 350-fold enriched preparation of the enzyme from human placenta. As an isomerase, the enzyme preparation catalyzed the conversion of pregn-5-ene-3,20-dione (Km 0.03 mmol/l) and androst-5-ene-3,17-dione (Km 0.05 mmol/l) to the respective 4-ene-3-oxosteroids (specific activity 0.8 U/mg protein). This isomerase activity strictly depended on the presence of glutathione (Km 0.04 mmol/l). As a transferase, the enzyme preparation catalyzed the conjugation of glutathione (Km 0.5 mmol/l) with 1-chloro-2,4-dinitrobenzene (Km 1.0 mmol/l) (specific activity 100 U/mg protein). This transferase activity was inhibited by all phenolic (KI values 0.2-1.5 mmol/l) and some of the neutral steroids (KI values 1.4-3.5 mmol/l) tested. Phenolic steroids inhibited the enzyme activity competitively to 1-chloro-2,4-dinitrobenzene and non-competitively to both substrates. The results indicate that steroids can interact with the placental glutathione transferase in vitro both as substrates and as inhibitors. Since, however, the observed Km and KI values of the steroids are far above the values of their concentrations in the placenta, these interactions are of only minor physiological relevance.  相似文献   

10.
The pH dependence of kcat/Km for the papain-catalyzed hydrolysis of ethyl hippurate, N-alpha-benzoyl-L-citrulline methyl ester, and the p-nitroanilide, amide, and ethyl ester derivatives of N-alpha-benzoyl-L-arginine was determined below pH 6.4. The value of kcat/Km was observed to be modulated by two acid ionizations rather than a single ionization as previously believed. For the five substrates studied, the average pK values for the two ionizations are 3.78 +/- 0.2 and 3.95 +/- 0.1 at T/2 0.3, 25 degrees C. The observation that similar pK values were obtained with different substrates was taken as evidence that the kinetically determined pK values are close in value to true macroscopic ionization constants for ionization of groups on the free enzyme.  相似文献   

11.
J Steyaert  L Wyns  P Stanssens 《Biochemistry》1991,30(35):8661-8665
We report on the effect of the viscogenic agents glycerol and ficoll on the RNase T1 catalyzed turnover of GpA, GpC, GpU, and Torula yeast RNA. For wild-type enzyme, we find that the kcat/Km values for the transesterification of GpC and GpA as well as for the cleavage of RNA are inversely proportional to the relative viscosity of glycerol-containing buffers; no such effect is observed for the conversion of GpU to cGMP and U. The second-order rate constants for His40Ala and Glu46Ala RNase T1, two mutants with a drastically reduced kcat/km ratio, are independent of the microviscosity, indicating that glycerol does not affect the intrinsic kinetic parameters. Consistent with the notion that molecular diffusion rates are unaffected by polymeric viscogens, addition of ficoll has no effect on the kcat/Km for GpC transesterification by wild-type enzyme. The data indicate that the second-order rate constants for GpC, GpA, and Torula yeast RNA are at least partly limited by the diffusion-controlled association rate of substrate and active site; RNase T1 obeys Briggs-Haldane kinetics for these substrates (Km greater than Ks). Calculations suggest that the equilibrium dissociation constants (Ks) for the various GpN-wild-type enzyme complexes are virtually independent of N whereas the measured kcat values follow the order GpC greater than GpA greater than GpU. This is also revealed by the steady-state kinetic parameters of Tyr38Phe and His40Ala RNase T1, two mutants that follow simple Michaelis-Menten kinetics because of a dramatically reduced kcat value (i.e., Km = Ks).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Three mutant Escherichia coli aspartate aminotransferases in which Val39 was changed to Ala, Leu, and Phe by site-directed mutagenesis were prepared and characterized. Among the three mutant and the wild-type enzymes, the Leu39 enzyme had the lowest Km values for dicarboxylic substrates. The Km values of the Ala39 enzyme for dicarboxylates were essentially the same as those of the wild-type (Val39) enzyme. These two mutant enzymes showed essentially the same kcat values for dicarboxylic substrates as did the wild-type enzyme. On the other hand, incorporation of a bulky side-chain at position 39 (Phe39 enzyme) decreased both the affinity (1/Km) and catalytic ability (kcat) toward dicarboxylic substrates. These results show that the position 39 residue is involved in the modulation of both the binding of dicarboxylic substrates to enzyme and the catalytic ability of the enzyme. Although the replacement of Val39 with other residues altered both the kcat and Km values toward various substrates including dicarboxylic and aromatic amino acids and the corresponding oxo acids, it did not alter the ratio of the kcat/Km value of the enzyme toward a dicarboxylic substrate to that for an aromatic substrate. The affinity for aromatic substrates was not affected by changing the residue at position 39. These data indicate that, although the side chain bulkiness of the residue at position 39 correlates well with the activity toward aromatic substrates in the sequence alignment of several aminotransferases [Seville, M., Vincent M.G., & Hahn, K. (1988) Biochemistry 27, 8344-8349], the residue does not seem to be involved in the recognition of aromatic substrates.  相似文献   

13.
We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.  相似文献   

14.
Narine AA  Watson JN  Bennet AJ 《Biochemistry》2006,45(30):9319-9326
The sialidase from Micromonospora viridifaciens has been found to catalyze the hydrolysis of aryl 2-thio-alpha-D-sialosides with remarkable efficiency: the first- and second-order rate constants, kcat and kcat/Km, for the enzyme-catalyzed hydrolysis of PNP-S-NeuAc are 196 +/- 5 s(-1) and (6.7 +/- 0.7) x 10(5) M(-1) s(-1), respectively. A reagent panel of eight aryl 2-thio-alpha-D-sialosides was synthesized and used to probe the mechanism for the M. viridifaciens sialidase-catalyzed hydrolysis reaction. In the case of the wild-type enzyme, the derived Br?nsted parameters (beta(lg)) on kcat and kcat/Km are -0.83 +/- 0.11 and -1.27 +/- 0.17 for substrates with thiophenoxide leaving groups of pKa values > or = 4.5. For the general-acid mutant, D92G, the derived beta(lg) value on kcat for the same set of leaving groups is -0.82 +/- 0.12. When the conjugate acid of the departing thiophenol was < or = 4.5, the derived Br?nsted slopes for both the wild-type and the D92G mutant sialidase were close to zero. In contrast, the nucleophilic mutant, Y370G, did not display a similar break in the Br?nsted plots, and the corresponding values for beta(lg), for the three most reactive aryl 2-thiosialosides, on kcat and kcat/Km are -0.76 +/- 0.28 and -0.84 +/- 0.04, respectively. Thus, for the Y370G enzyme glycosidic C-S bond cleavage is rate-determining for both kcat and kcat/Km, whereas, for both the wild-type and D92G mutant enzymes, the presented data are consistent with a change in rate-determining step from glycosidic C-S bond cleavage for substrates in which the pKa of the conjugate acid of the leaving group is > or = 4.5, to either deglycosylation (kcat) or a conformational change that occurs prior to C-S bond cleavage (kcat/Km) for the most activated leaving groups. Thus, the enzyme-catalyzed hydrolysis of 2-thiosialosides is strongly catalyzed by the nucleophilic tyrosine residue, yet the C-S bond cleavage does not require the conserved aspartic acid residue (D92) to act as a general-acid catalyst.  相似文献   

15.
Six different substrates have been used for measuring the activity of alpha-chymotrypsin in reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in isooctane. The substrates were glutaryl-Phe p-nitroanilide, succinyl-Phe p-nitroanilide, acetyl-Phe p-nitroanilide, succinyl-Ala-Ala-Phe p-nitroanilide, succinyl-Ala-Ala-Pro-Phe p-nitroanilide and acetyl-Trp methyl ester. It has been shown that the dependence of the kinetic constants (kcat and Km) on the water content of the system, on wo (= [H2O]/[AOT]), is different for the different substrates. This indicates that activity-wo profiles for alpha-chymotrypsin in reverse micelles not only reflect an intrinsic feature of the enzyme alone. For the p-nitroanilides it was found that the lower kcat (and the higher Km) in aqueous solution, the higher kcat as well as Km in reverse micelles. "Superactivity" of alpha-chymotrypsin could only be found with the ester substrate and with relatively "poor" p-nitroanilides. The presence of a negative charge in the substrate molecule is not a prerequisite for alpha-chymotrypsin to show "superactivity".  相似文献   

16.
Protein methylesterase (PME) amino acid composition and substrate specificity towards methylated normal and deamidated protein substrates were investigated. The enzyme contained 23% acidic and 5% basic residues. These values are consistent with a pI of 4.45. The product formed from methylated protein by PME was confirmed as methanol by h.p.l.c. The kcat. and Km values for several methylated protein substrates ranged from 20 x 10(-6) to 560 x 10(-6) s-1 and from 0.5 to 64 microM respectively. However, the kcat./Km ratios ranged within one order of magnitude from 11 to 52 M-1.s-1. Results with the irreversible cysteine-proteinase inhibitor E-64 suggested that these low values were in part due to the fact that only one out of 25 molecules in the PME preparations was enzymically active. When PME was incubated with methylated normal and deamidated calmodulin, the enzyme hydrolysed the latter substrate at a higher rate. The Km and kcat. for methylated normal calmodulin were 0.9 microM and 31 x 10(-6) s-1, whereas for methylated deamidated calmodulin values of 1.6 microM and 188 x 10(-6) s-1 were obtained. The kcat./Km ratios for methylated normal and deamidated calmodulin were 34 and 118 M-1.s-1 respectively. By contrast, results with methylated adrenocorticotropic hormone (ACTH) substrates indicated that the main difference between native and deamidated substrates resides in the Km rather than the kcat. The Km for methylated deamidated ACTH was 5-fold lower than that for methylated native ACTH. The kcat./Km ratios for methylated normal and deamidated ACTH were 43 and 185 M-1.s-1 respectively. These results indicate that PME recognizes native and deamidated methylated substrates as two different entities. This suggests that the methyl groups on native calmodulin and ACTH substrates may not be on the same amino acid residues as those on deamidated calmodulin and ACTH substrates.  相似文献   

17.
M R Sierks  K Bock  S Refn  B Svensson 《Biochemistry》1992,31(37):8972-8977
The specificity constants, kcat/KM, were determined for glucose oxidase and glucose dehydrogenase using deoxy-D-glucose derivatives and for glucoamylase using deoxy-D-maltose derivatives as substrates. Transition-state interactions between the substrate intermediates and the enzymes were characterized by the observed kcat/Km values and found to be very similar. The binding energy contributions of individual sugar hydroxyl groups in the enzyme/substrate complexes were calculated using the relationship delta(delta G) = -RT ln [(kcat/KM)deoxy/(kcat/KM)hydroxyl] for the series of analogues. The activity of all three enzymes was found to depend heavily on the 4- and 6-OH groups (4'- and 6'-OH in maltose), where changes in binding energies from 10 to 18 kJ/mol suggested strong hydrogen bonds between the enzymes and these substrate OH groups. The 3-OH (3'-OH in maltose) was involved in weaker interactions, while the 2-OH (2'-OH in maltose) had a very small if any role in transition-state binding. The three enzyme-substrate transition-state interactions were compared using linear free energy relationships (Withers, S. G., & Rupitz, K. (1990) Biochemistry 29, 6405-6409) in which the set of kcat/KM values obtained with substrate analogues for one enzyme is plotted against the corresponding values for a second enzyme. The high linear correlation coefficients (rho) obtained, 0.916, 0.958, and 0.981, indicate significant similarity in transition-state interactions, although the three enzymes lack overall sequence homology.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Replacement of the 21-methyl group of 20 beta-hydroxypregn-4-en-3-one with an ethoxyacetylene group yields a compound that is an excellent substrate (pH 7.4, Km = 2.3 microM, Vmax = 4.6 nmol min-1 micrograms-1) for the Streptomyces hydrogenans NAD(H)-dependent 20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53). The enzyme-generated ethoxyacetylenic ketone product is a potent inactivator of the enzyme. Gel filtration chromatography of enzyme inactivated with radiolabeled steroid demonstrates that covalent modification of the enzyme has occurred. Both NAD and NADH retard the rate of inactivation, suggesting that only free enzyme is susceptible to covalent modification. Consequently, enzymatically formed ethoxyacetylenic ketone does not react with the enzyme while it is part of the ternary complex. Moreover, the kinetically preferred release of this reactive ketone prior to NADH release assures that enzyme inactivation occurs only when released ketone subsequently encounters free enzyme. Kinetic analysis of inactivations carried out with chemically prepared ethoxyacetylenic ketone and enzyme at pH 7.4 and 9.2 yields bimolecular rate constants for the inactivation process of 1.15 X 10(4) L mol-1 s-1 and 6.94 X 10(4) L mol-1 s-1, respectively. This bimolecular reaction is faster than the bimolecular reaction of the ethoxyacetylenic ketone with either glutathione, mercaptoethanol, or dithiothreitol. Thus, complete inactivation by ketone generated from 5 microM alcohol and 5 microM NAD occurs in 30 min at pH 7.4 in the presence of 1 mM glutathione.  相似文献   

19.
Some of the essential structural requirements for the enzymatic reaction of pure human renin acting on pure human and rat angiotensinogen and on their synthetic tetradecapeptide substrates were investigated. The five carboxy terminal amino acids of synthetic tetradecapeptides played a significant role in substrate recognition and/or hydrolysis by human renin. Kinetic constants Km, Kcat and kcat/Km of the various human renin assays were different according to the substrate used. The presence of either an asparagine or a threonine residue in the S'4 renin subsite did not affect significantly the kinetic constant values. A tyrosine residue, rather than a histidine residue, in the S'3 renin subsite gave the best synthetic substrate studied. When tyrosine residue was present in the S'2 renin subsite an important decrease in kcat was observed. Human angiotensinogen was hydrolysed by human renin with lower Km and kcat values than those measured with human and porcine synthetic substrates, suggesting that the 3-dimensional structure of human angiotensinogen plays a key role in the hydrolysis. This finding was supported by assays performed with rat angiotensinogen, which was cleared by human renin with the same kcat value as rat tetradecapeptide, but with a 49-fold lower Km. Between human and rat angiotensinogen a kcat/Km value of only 2-fold higher has been found in the renin assay using human substrate.  相似文献   

20.
Wang P  Seah SY 《The FEBS journal》2005,272(4):966-974
BphH is a divalent metal ion-dependent hydratase that catalyzes the formation of 2-keto-4-hydroxypentanoate from 2-hydroxypent-2,4-dienoate (HPDA). This reaction lies on the catabolic pathway of numerous aromatics, including the significant environmental pollutant, polychlorinated biphenyls (PCBs). BphH from the PCB degrading bacterium, Burkholderia xenoverans LB400, was overexpressed and purified to homogeneity. Atomic absorption spectroscopy and Scatchard analysis reveal that only one divalent metal ion is bound to each enzyme subunit. The enzyme exhibits the highest activity when Mg2+ was used as cofactor. Other divalent cations activate the enzyme in the following order of effectiveness: Mg2+ > Mn2+ > Co2+ > Zn2+ > Ca2+. This differs from the metal activation profile of the homologous hydratase, MhpD. UV-visible spectroscopy of the Co2+-BphH complex indicates that the divalent metal ion is hexa-coordinated in the enzyme. The nature of the metal ion affected only the kcat and not the Km values in the BphH hydration of HPDA, suggesting that cation has a catalytic rather than just a substrate binding role. BphH is able to transform alternative substrates substituted with methyl- and chlorine groups at the 5-position of HPDA. The specificity constants (kcat/Km) for 5-methyl and 5-chloro substrates are, however, lowered by eight- and 67-fold compared with the unsubstituted substrate. Significantly, kcat for the chloro-substituted substrate is eightfold lower compared with the methyl-substituted substrate, showing that electron withdrawing substituent at the 5-position of the substrate has a negative influence on enzyme catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号