首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Enzymatic activities which dephosphorylate dolichyl phosphate (Dol-P) and dolichyl pyrophosphate (Dol-P-P) have been observed in membranes from cultured human lymphocytes. Neither activity requires divalent metals. Dol-P phosphatase is inhibited by inorganic phosphate but not by other phosphate-containing compounds. Dol-P-P phosphatase is inhibited by bacitracin but not by phosphate-containing compounds including the methylene analogue of pyrophosphate. These reactions are similar to those previously found in the cycle of bacterial wall peptidoglycan biosynthesis. A chemical synthesis of [32P]Dol-P and [32P]Dol-P-P is reported.  相似文献   

2.
The subcellular distribution of polyisoprenyl pyrophosphate phosphatase activity has been examined in rat brain by assaying the release of 32Pi from [beta-32P]dolichyl pyrophosphate (Dol-P-P) as described previously (Scher,M.G. and Waechter, C.J. (1984) J. Biol. Chem., 259, 14580-14585). The highest specific activities of Dol-P-P phosphatase in rat brain were found in the Golgi-enriched light microsomal, synaptic plasma membrane and heavy microsomal fractions. A comparative analysis of the distribution of galactosyltransferase and dolichol kinase reveals that Dol-P-P phosphatase activity co-fractionates with galactosyltransferase activity, and that the high level found in the Golgi-enriched fraction is not due to cross-contamination with heavy microsomes. When beta-labelled C95 Dol-P-P and the C95 allylic polyisoprenyl pyrophosphate (Poly-P-P) were compared as substrates for the Golgi-enriched light microsomal and heavy microsomal fractions, similar Km values were calculated for the two pyrophosphorylated substrates for each membrane fraction. Based on these kinetic analyses, the enzyme(s) catalysing this reaction do not distinguish between substrates containing saturated or allylic alpha-isoprene units. When Dol-P-P phosphatase activity was assessed in submicrosomal fractions obtained from rat liver by two separate procedures, the highest specific activity was also detected in the Golgi-enriched fraction. While the specific activities for Dol-P-P phosphatase and sialyltransferase were in the relative order of Golgi greater than smooth endoplasmic reticulum (ER) greater than rough ER, the relative order of dolichol kinase was rough ER greater than smooth ER greater than Golgi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
During protein N-glycosylation, dolichyl pyrophosphate (Dol-P-P) is discharged in the lumenal monolayer of the endoplasmic reticulum (ER). Dol-P-P is then cleaved to Dol-P by Dol-P-P phosphatase (DPPase). Studies with the yeast mutant cwh8Delta, lacking DPPase activity, indicate that recycling of Dol-P produced by DPPase contributes significantly to the pool of Dol-P utilized for lipid intermediate biosynthesis on the cytoplasmic leaflet. Whether Dol-P formed in the lumen diffuses directly back to the cytoplasmic leaflet or is first dephosphorylated to dolichol has not been determined. Incubation of sealed ER vesicles from calf brain with acetyl-Asn-Tyr-Thr-NH(2), an N-glycosylatable peptide, to generate Dol-P-P in the lumenal monolayer produced corresponding increases in the rates of Man-P-Dol, Glc-P-Dol, and GlcNAc-P-P-Dol synthesis in the absence of CTP. No changes in dolichol kinase activity were observed. When streptolysin-O permeabilized CHO cells were incubated with an acceptor peptide, N-glycopeptide synthesis, requiring multiple cycles of the dolichol pathway, occurred in the absence of CTP. The results obtained with sealed microsomes and CHO cells indicate that Dol-P, formed from Dol-P-P, returns to the cytoplasmic leaflet where it can be reutilized for lipid intermediate biosynthesis, and dolichol kinase is not required for recycling. It is possible that the flip-flopping of the carrier lipid is mediated by a flippase, which would provide a mechanism for the recycling of Dol-P derived from Man-P-Dol-mediated reactions in N-, O-, and C-mannosylation of proteins, GPI anchor assembly, and the three Glc-P-Dol-mediated reactions in Glc(3)Man(9)GlcNAc(2)-P-P-Dol (DLO) biosynthesis.  相似文献   

4.
Mutations in the CWH8 gene, which encodes an ER transmembrane protein with a phosphate binding pocket in Saccharomyces cerevisiae, result in a deficiency in dolichyl pyrophosphate (Dol-P-P)-linked oligosaccharide intermediate synthesis and protein N-glycosylation (van Berkel, M. A., Rieger, M., te Heesen, S., Ram, A. F., van den Ende, H., Aebi, M., and Klis, F. M. (1999) Glycobiology 9, 243-253). Genetic, enzymological, and topological approaches were taken to investigate the potential role of Cwh8p in Dol-P-P/Dol-P metabolism. Overexpression of Cwh8p in the yeast double mutant strain, lacking LPP1/DPP1, resulted in an impressive increase in Dol-P-P phosphatase activity, a relatively small increase in Dol-P phosphatase activity, but no change in phosphatidate (PA) phosphatase activity in microsomal fractions. The Dol-P-P phosphatase encoded by CWH8 is optimally active in the presence of 0.5% octyl glucoside and relatively unstable in Triton X-100, distinguishing this activity from the lipid phosphatases encoded by LPP1 and DPP1. Stoichiometric amounts of P(i) and Dol-P are formed during the enzymatic reaction indicating that Cwh8p cleaves the anhydride linkage in Dol-P-P. Membrane fractions from Sf-9 cells expressing Cwh8p contained a 30-fold higher level of Dol-P-P phosphatase activity, a slight increase in Dol-P phosphatase activity, but no increase in PA phosphatase relative to controls. This is the first report of a lipid phosphatase that hydrolyzes Dol-P-P/Dol-P but not PA. In accord with this enzymatic function, Dol-P-P accumulated in cells lacking the Dol-P-P phosphatase. Topological studies using different approaches indicate that Cwh8p is a transmembrane protein with a luminally oriented active site. The specificity, subcellular location, and topological orientation of this novel enzyme are consistent with a role in the re-utilization of the glycosyl carrier lipid for additional rounds of lipid intermediate biosynthesis after its release during protein N-glycosylation reactions.  相似文献   

5.
Calf brain membranes have been shown to enzymatically dephosphorylate endogenous and partially purified, exogenous dolichyl [32P]monophosphate. The properties and specificity of the dolichyl monophosphatase activity have been studied by following the release of [32P]phosphate from exogenous dolichyl [32P]monophosphate added in a dispersion with Triton X-100. The calf brain phosphatase (1) is inhibited by Mn2+, Mg2+, Ca2+, fluoride, and phosphate; (2) exhibits a neutral pH optimum; and (3) has an apparent Km of 200 μm for dolichyl monophosphate. Dolichyl monophosphatase activity can be distinguished from phosphatidate phosphatase on the basis of their responses to fluoride and phosphate. Based on differential thermolability and the effects of divalent cations and EDTA, the calf brain dolichyl monophosphatase can also be discriminated from the general phosphatase activity assayed with p-nitrophenyl phosphate. Dolichyl monophosphatase activity can be solubilized by treating microsomes with Triton X-100. The enzymatic dephosphorylation of exogenous dolichyl [32P]monophosphate catalyzed by particulate and detergent-solubilized preparations is negligibly affected by equimolar concentrations of ATP and an assortment of phosphomonoesters, including phosphatidic acid and hexadecyl phosphate. A reduction of approximately 40% in dolichyl monophosphatase activity is observed in the presence of equimolar amounts of retinyl monophosphate. Overall, these results represent good evidence for the presence of a neutral polyisoprenyl monophosphatase in central nervous tissue.  相似文献   

6.
Dolichol kinase activity is effectively solubilized by extracting calf brain microsomes with 2% 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic detergent. The solubilized kinase catalyzes the enzymatic phosphorylation of dolichols with either CTP or dCTP serving as phosphoryl donor in the presence of Ca2+. Similar Km values were calculated for CTP (7.7 microM) and dCTP (9.1 microM). Dolichol phosphorylation was inhibited by CDP and dCDP, but not CMP, ADP, GDP, or UDP. A kinetic analysis of the inhibitory effect of CDP revealed a pattern characteristic of competitive inhibition. Dolichol kinase activity was markedly stimulated by the addition of R-dolichol (C95) or S-dolichol(C95). The apparent Km value for R-dolichol(C95) and S-dolichol(C95) was 9 microM, but the Vmax for the phosphorylation reaction was 40% higher with S-dolichol(C95). Incubation of the CHAPS extract with [gamma-32P]CTP and exogenous undecaprenol(C55) resulted in the enzymatic synthesis of a radiolabeled product that was mild acid-labile and chromatographically identical to undecaprenyl monophosphate. An enzymatic comparison with a variety of polyprenol substrates indicates that the solubilized kinase prefers long-chain (C90-95) polyprenols with saturated alpha-isoprene units. The effect of exogenous phosphoglycerides on the kinase activity in the dialyzed CHAPS extracts has also been evaluated. These studies describe the properties and polyprenol specificity of stable, solubilized preparations of dolichol kinase that should be useful for further purification of the enzyme.  相似文献   

7.
1. The membrane-bound phosphatidate-dependent phosphatidic acid phosphatase activity of rat lung has been investigated in cytosol and microsomal fractions using as a substrate [32P]phosphatidate bound to heat inactivated rat liver microsomes. Both activities demonstrated broad pH optima with a maximum of 7.4--8 for the cytosol and a maximum of 6.5--7.5 with microsomal preparations. 2. At low concentrations (0--5 mM) Mg2+ produced a slight stimulation of the cytosol activity but at higher concentrations an inhibition was observed. Low concentrations (1.0--2.0 mM) of EDTA abolished the cytosol activity and reduced the microsomal activity to half. In both cases, the addition of Mg2+ in the presence of EDTA resulted in an activity which was more than 2-fold greater than that observed in the absence of chelator or divalent cation. 3. The cytosol activity was relatively resistant to the addition of ionic and nonionic detergents. In general, the addition of a number of phosphate esters increased rather than decreased the release of 32Pi, indicating a relative specificity for phosphate groups associated with a hydrophobic environment. The addition of aqueous dispersions of phosphatidate, lysophosphatidic acid or phosphatidylglycerophosphate markedly reduced the hydrolysis of membrane-bound [32P]phosphatidate. The cytosol activity was slightly inhibited by the addition of phosphatidylcholine. 4. In an attempt to estimate the relative contributions of the cytosol and microsomal activities in vivo, these activities were assayed using [32P]phosphatidate endogenously generated on rat lung microsomes. With the 32P-labelled microsomes, the hydrolysis remained linear over the 45 min of the experiment. Addition of high speed supernatant produced a rapid release of 32Pi during the first 10 min followed by a more gradual release similar to that oberved with the microsomes alone. The cytosol activity remained greater than the microsomal activity at all times studied. 5. When [14C]phosphatidate-labelled microsomes were incubated in the presence of nonradioactive CDPcholine, the addition of cytosol markedly stimulated the incorporation of radioactivity into phosphatidylcholine. This observation suggests that the phosphatidic acid phosphatase activity associated with the cytosol has a role in phosphatidylcholine (and presumably surfactant) biosynthesis in rat lung.  相似文献   

8.
The rates of synthesis of dolichol-linked oligosaccharide intermediates and protein N-glycosylation increased substantially during a developmental period corresponding to glial differentiation in primary cultures of embryonic rat brain. In this study developmental changes in three enzymes involved in dolichyl phosphate (Dol-P) metabolism have been examined by in vitro assays and correlated with the induction pattern for lipid intermediate synthesis and protein N-glycosylation. Dolichyl pyrophosphate (Dol-P-P) phosphatase activity was relatively low during the first 9 days in culture, but it increased significantly between days 9 and 25. Dol-P-P phosphatase did not change appreciably between days 22 and 30 in culture. A kinetic analysis of the developmental change in Dol-P-P phosphatase activity revealed that the Vmax increased 10-fold between days 4 and 22, and there was also a significant change in the apparent Km for Dol-P-P. Dolichol kinase activity increased during the period (9-15 days) when there was a significant induction in oligosaccharide-lipid synthesis and protein N-glycosylation, and then declined in parallel with lipid intermediate synthesis and protein N-glycosylation. Dol-P phosphatase activity was present at relatively low levels for the first 9 days in culture, but it increased steadily between days 9 and 30. A kinetic comparison of the activity in membrane fractions from brain cells cultured for 9 and 25 days indicated that there was a 10-fold increase in enzyme protein with unaltered affinity for Dol-P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A series of polyprenols, ranging in length from 15 to 22 isoprene units, has been isolated from soya beans (Glycine max) and purified by high-pressure liquid chromatography. N.m.r., i.r. and mass spectra of the compounds indicated that they are alpha-saturated polyprenols of the dolichol type. The amount present in dry seeds was about 9 mg/100 g, whereas dolichyl phosphate (Dol-P) was present only in trace amounts. Dol-P phosphatase activity was detected in the microsomal fraction of 5-day-old germinating soya-bean cotyledons. The Dol-P phosphatase activity was linear with respect to time and protein concentration and exhibited a broad pH optimum (pH 7-9). Triton X-100 was necessary for significant enzyme activity. Enzyme activity was slightly enhanced by EDTA, whereas dithiothreitol was without effect. An apparent Km of 5 microM was determined for Dol-P. Bivalent metal ions were not required for enzyme activity. A number of phosphorylated compounds tested as enzyme substrates (including a number of nucleoside phosphates, glucose 6-phosphate, sodium beta-glycerophosphate and Na4P2O7) did not compete with [1-3H]Dol-P as substrate. A number of phospholipids were also tested for their ability to act as Dol-P phosphatase substrates. At 1 mM concentration, phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid and lysophosphatidic acid each inhibited enzymic activity. However, at 0.1 mM concentration, phosphatidylcholine and phosphatidylethanolamine were slightly stimulatory, whereas phosphatidic acid and lysophosphatidic acid were still inhibitory. Phosphatidic acid showed competitive inhibition.  相似文献   

10.
The chick oviduct system has been employed to study whether dolichol esters might serve as a storage form of dolichol to be converted to dolichyl phosphate (Dol-P) during periods when Dol-P levels increase. Chicken oviduct membranes catalyze the hydrolysis of dolichyl-[14C]oleate; the reaction is dependent on detergent (0.04% NP-40 is optimal), is unaffected by divalent cations and EDTA, and exhibits a pH optimum of 6.0. Oviduct membranes also hydrolyze cholesteryl-[14C]oleate, which exhibits similar properties except the pH optimum is 5.0-5.5. Neither Dol-[14C]palmitate nor Chol-[14C]palmitate is hydrolyzed by membranes. Chol-ester hydrolysis is more sensitive to heat-denaturation than is Dol-ester hydrolysis. Esterase activity was assayed in membranes prepared from immature chicks, chicks treated with diethylstilbestrol, chicks withdrawn from diethylstilbestrol, and mature hens. The highest esterase specific activity was observed in membranes obtained from chicks withdrawn from hormone. In order to characterize the fatty acid composition of Dol-esters they were purified from mature hen oviducts by chromatography on DEAE-cellulose and Fractogel ORPVA-6000, reverse-phase HPLC, and TLC. About 15-25% of oviduct dolichol is in the esterified form. Fatty acid analysis revealed that approximately 85% of the dolichol was esterified to oleic acid. The fact that the highest esterase activity is found in membranes from chicks withdrawn from hormone and that only 20% of the dolichol is esterified argues against a role for Dol-esters as a reservoir of dolichol for conversion to Dol-P.  相似文献   

11.
Rat liver microsomes were isolated and fractionated into Golgi, smooth endoplasmic reticulum (SER), and rough endoplasmic reticulum (RER), and the purity of these preparations was determined. The dolichyl phosphate (Dol-P) content of whole microsomes and of each of the submicrosomal fractions was estimated using high pressure liquid chromatography. Dol-P accounts for 4 and 40% of the sum of the alcohol, the fatty acyl esters of dolichol, and monophosphate forms present in whole liver and in purified microsomes, respectively. Concentrations equal to 58, 77, and 108 ng of Dol-P/mg of protein were found in Golgi, SER, and RER, respectively. These values represent 3, 36, and 54% of the sum of the alcohol, the fatty acyl esters of dolichol, and monophosphate forms present in each of these same fractions, respectively. Increases in the Dol-P content of rat liver were observed as early as 12 h after turpentine-induced inflammation and increased 2-fold over 36 h. In this system, Dol-P accounts for no more than 50% of the sum of all phosphorylated and pyrophosphorylated dolichol intermediates present. The specific activity for dolichyl phosphate phosphatase was highest by more than a factor of 2 in Golgi membrane. Specific activities obtained for SER and RER were 42 and 11% of those present in Golgi. The major requirement for Dol-P is thought to be for the saccharide and oligosaccharide transferase reactions which are presumed to take place in RER. The discovery of significant quantities of Dol-P in Golgi and SER is consistent with a possible role of Dol-P in the transport of sugars required for glycoprotein synthesis and processing from a cytosolic to luminal orientation.  相似文献   

12.
Bovine thyroid membranes are able to dephosphorylate exogenous [1-3H]DMP as well as endogenous prelabeled [32P]DMP. The kinetics, properties and specificity of the dolichylmonophosphatase activity have been studied by monitoring respectively the release of [1-3H]dolichol from [1-3H]DMP and the residual amount of [32P]DMP. The DMP-phosphatase activity is not linear with respect to time and exhibits a neutral pH optimum. There is only linearity in a narrow range of protein concentration when 0.25% Triton X-100 is included in the incubation mixture. Studying the enzymatic activity in function of protein concentration, the detergent requirement shows to be very critical. Triton X-100 is necessary for enzymatic activity with [1-3H]DMP (only 10% of enzymatic activity in the absence of detergent) although the detergent inhibits the hydrolysis of endogenous prelabeled [32P]DMP. Divalent cations are not essential for enzymatic activity, Ca2+-ions being even inhibitory. In accordance, EDTA (EGTA) is slightly stimulatory. The DMP-Pase activity is not influenced by the ionic strength of the incubation system and sulphydryl groups are not involved. NaF, VOS and VO4(3-) are strongly inhibitory. The inhibition by dolichol and PO3-4 can be explained as the result of product inhibition. An apparent Km-value of 2.5 X 10(-5) M is computed for [1-3H]DMP. Bacitracin inhibits DMP-phosphatase in contrast with other reports. Propylthiouracyl, cAMP, TSH and several other bio-effectors are without effect on the in vitro system. The specificity of the DMP-Pase activity is discussed, showing that the phosphatase is distinctly different from other phosphatases especially phosphatidic acid phosphohydrolase.  相似文献   

13.
When calf brain membrane preparations containing endogenous dolichyl [32P]monophosphate (Dol-32P), prelabeled enzymatically by [gamma-32P]-CTP, are incubated with unlabeled UDP-glucose, the formation of a mild acid-labile [32P]phosphoglucolipid is observed. The biosynthesis of the [32P]phosphoglucolipid is dependent on the concentration of UDP-glucose added, and no [32P]phosphoglycolipid appeared when UDP-glucose was replaced by ADP-glucose, UDP-xylose, UDP-galactose, UDP-mannose, or UDP-glucuronic acid. The 32P-labeled product formed by the UDP-glucose-dependent reaction is chemically and chromatographically identical to glucosylphosphoryldolichol. Several enzymatic parameters of the glucosylation of the specific pool of Dol-P, synthesized by the CTP-mediated kinase, and the total available pool of Dol-P have been compared by a double-label assay utilizing endogenous, prelabeled Dol-32P and UDP-[3H]glucose as substrates.  相似文献   

14.
The CWH8 gene in Saccharomyces cerevisiae has been shown recently (Fernandez, F., Rush, J. S., Toke, D. A., Han, G., Quinn, J. E., Carman, G. M., Choi, J.-Y., Voelker, D. R., Aebi, M., and Waechter, C. J. (2001) J. Biol. Chem. 276, 41455-41464) to encode a dolichyl pyrophosphate (Dol-P-P) phosphatase associated with crude microsomal fractions. Mutations in CWH8 result in the accumulation of Dol-P-P, deficiency in lipid intermediate synthesis, defective protein N-glycosylation, and a reduced growth rate. A cDNA (DOLPP1, GenBank accession number AB030189) from mouse brain encoding a homologue of the yeast CWH8 gene is now shown to complement the defects in growth and protein N-glycosylation, and to correct the accumulation of Dol-P-P in the cwh8Delta yeast mutant. Northern blot analyses demonstrate a wide distribution of the DOLPP1 mRNA in mouse tissues. Overexpression of Dolpp1p in yeast, COS, and Sf9 cells produces substantial increases in Dol-P-P phosphatase activity but not in dolichyl monophosphate or phosphatidic acid phosphatase activities in microsomal fractions. Subcellular fractionation and immunofluorescence studies localize the enzyme encoded by DOLPP1 to the endoplasmic reticulum of COS cells. The results of protease sensitivity studies with microsomal vesicles from the lpp1Delta/dpp1Delta yeast mutant expressing DOLPP1 are consistent with Dolpp1p having a luminally oriented active site. The sequence of the DOLPP1 cDNA predicts a polypeptide with 238 amino acids, and a new polypeptide corresponding to 27 kDa is observed when DOLPP1 is expressed in yeast, COS, and Sf9 cells. This study is the first identification and characterization of a cDNA clone encoding an essential component of a mammalian lipid pyrophosphate phosphatase that is highly specific for Dol-P-P. The specificity, subcellular location, and topological orientation of the active site described in the current study strongly support a role for Dolpp1p in the recycling of Dol-P-P discharged during protein N-glycosylation reactions on the luminal leaflet of the endoplasmic reticulum in mammalian cells.  相似文献   

15.
Regulation of Glc transfer from UDP-Glc via Glc-P-Dolichol to form Glc3-Man9-oligosaccharide-lipid has been studied during estrogen-induced chick oviduct differentiation. The process was studied as two distinct reactions: transfer of Glc from UDP-Glc to Dol-P, forming Glc-P-Dol; and transfer of Glc from Glc-P-Dol to Man9-OL (oligosaccharide-lipid), forming a series of glucosylated oligosaccharide-lipids. Kinetic analysis of [14C]Glc transfer from UDP-[14C]Glc to endogenous Dol-P shows that Dol-P is limiting in membrane preparations and that, concomitant with estrogen-induced differentiation, there is an increase in Dol-P available for Glc transfers. There is also greater glucosyl transferase activity present in membranes from mature hens and estrogenized chicks than in membranes from immature chicks. In order to study the second phase of glucosylation, transfer to the oligosaccharide, it was necessary to develop an assay in which membranes could be reacted with exogenously added substrates, [14C]Glc-P-Dol and [3H]Man9-OL. This reaction is dependent on detergent (0.02% NP-40 was used) and is stimulated by EDTA. The apparent Km for Glc-P-Dol was about 1.5 microM. A series of double-labeled oligosaccharides having sizes consistent with Glc1-, Glc2-, and Glc3-Man9-OL were formed. Chemical and enzymatic analysis of [14C]Glc oligosaccharides formed by incubation with the exogenous substrates, or by incubation with UDP-[14C]Glc and endogenous acceptors, indicated that the glucosylated oligosaccharides were similar. Assays of membranes from estrogenized chicks, mature hens, and hormone-withdrawn chicks showed increased glucosyl transferase activity upon hormone treatment. Similar assays in the absence of exogenous Man9-OL indicated that hormone treatment was also accompanied by increased levels of endogenous oligosaccharide-lipid acceptors.  相似文献   

16.
17.
Estrogen-induced chick oviduct differentiation is accompanied by an increased capacity for protein glycosylation. A portion of this increase has been attributed to increased levels of dolichyl phosphate (Dol-P). Hormone withdrawal leads to an apparent decrease in Dol-P. Dol-P metabolism in the oviduct has been studied, and one of the enzymes having a direct effect on Dol-P, Dol-P phosphatase is herein described. Dol-P phosphatase has a pH optimum of 6.0, does not require a metal ion, and is inhibited by Mn2+ at concentrations greater than 5 mM. Inhibitor studies indicate that Dol-P hydrolysis is inhibited by polyprenyl phosphates having both saturated and unsaturated alpha-isoprene residues, but not by the corresponding alcohols. The enzyme is also inhibited by phosphatidic acid unless 2 mM Mn2+ is included in the incubations. Under these conditions Dol-P hydrolysis is only slightly inhibited (less than 10%), but phosphatidate inhibition is totally eliminated. Oviduct membranes also possess phosphatidate phosphatase, but this enzyme is distinct from Dol-P phosphatase based on thermolability, metal ion sensitivity, and sulfhydryl reagent sensitivity. Studies of enzyme activity in response to estrogen treatment reveal that both Dol-P phosphatase and phosphatidate phosphatase have maximal specific activity early in the differentiation process (peaking after 3 days of treatment), and low specific activity in fully differentiated oviducts, including laying hen oviduct. Hormone withdrawal elicits a small increase in specific activity of both phosphatases. The hormone effects suggest that Dol-P phosphatase may be a biosynthetic enzyme.  相似文献   

18.
The bacA gene, the overexpression of which results in bacitracin resistance, was inactivated and shown to be non-essential for growth of Escherichia coli. It was proposed earlier that the bacA gene product may confer resistance to the antibiotic by phosphorylation of undecaprenol (Cain, B. D., Norton, P. J., Eubanks, W., Nick, H. S., and Allen, C. M. (1983) J. Bacteriol. 175, 3784-3789). In the present work, this extremely hydrophobic membrane protein was overproduced and purified to near homogeneity. The analysis of its catalytic properties clearly demonstrated that the purified BacA protein exhibited undecaprenyl pyrophosphate phosphatase activity but not undecaprenol phosphokinase activity. This finding was perfectly consistent with the mechanism of action of bacitracin that consists in the sequestration of undecaprenyl pyrophosphate, the BacA enzyme substrate. The level of undecaprenyl pyrophosphate phosphatase was increased by 280-fold in cells carrying bacA on a multicopy expression plasmid. It was decreased by approximately 75% but was not completely abolished in a bacA disruption mutant, suggesting that BacA is the main E. coli undecaprenyl pyrophosphate phosphatase but that other protein(s) exhibiting such an activity should exist to account for the residual activity and viability of the mutant strain. This is the first gene encoding undecaprenyl pyrophosphate phosphatase identified to date. Considering its newly identified function, we propose to rename the bacA gene uppP.  相似文献   

19.
The subcellular locations of several enzymes involved in dolichyl monophosphate (Dol-P) metabolism in brain have been investigated. Dolichol kinase is highly enriched in a heavy microsomal fraction from calf brain, while 71% of the Dol-P phosphatase activity was recovered with the light microsomes. Lower amounts of the phosphatase activity were also found in the heavy microsomal, mitochondrial-lysosomal, and synaptic plasma membrane fractions. Since the light microsomal fraction also contained substantial acetylcholinesterase activity, an axon plasma membrane marker, an axolemma-enriched fraction, was prepared from rat brain by a second procedure. A comparison with microsomal and mitochondrial-lysosomal fractions revealed that the axolemma-enriched fraction contained the highest specific activity of Dol-P phosphatase, indicating that the enzyme was present in the axon plasma membrane. The tunicamycin-sensitive UDP-N-acetylglucosamine:Dol-P N- acetylglucosaminylphosphotransferase , glucosyl- phosphoryldolichol (Glc-P-Dol) synthase, Glc-P-Dol:oligosaccharide glucosyltransferase, and the oligosaccharyltransferase were all found predominantly in the heavy microsomes. These results indicate that the enzymes responsible for the initiation and termination of biosynthesis, as well as the transfer of dolichol-linked oligosaccharides, reside in the rough endoplasmic reticulum (ER) of central nervous tissue. Evidence that at least some Dol-P molecules formed by dolichol kinase are accessible to multiple glycosyltransferases in the rough ER of brain is also presented.  相似文献   

20.
The synthesis of the lipid carrier undecaprenyl phosphate (C(55)-P) requires the dephosphorylation of its precursor, undecaprenyl pyrophosphate (C(55)-PP). The latter lipid is synthesized de novo in the cytosol and is also regenerated after its release from the C(55)-PP-linked glycans in the periplasm. In Escherichia coli the dephosphorylation of C(55)-PP was shown to involve four integral membrane proteins, BacA, and three members of the type 2 phosphatidic acid phosphatase family, PgpB, YbjG, and YeiU. Here, the PgpB protein was purified to homogeneity, and its phosphatase activity was examined. This enzyme was shown to catalyze the dephosphorylation of C(55)-PP with a relatively low efficiency compared with diacylglycerol pyrophosphate and farnesyl pyrophosphate (C(15)-PP) lipid substrates. However, the in vitro C(55)-PP phosphatase activity of PgpB was specifically enhanced by different phospholipids. We hypothesize that the phospholipids are important determinants to ensure proper conformation of the atypical long axis C(55) carrier lipid in membranes. Furthermore, a topological analysis demonstrated that PgpB contains six transmembrane segments, a large periplasmic loop, and the type 2 phosphatidic acid phosphatase signature residues at a periplasmic location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号