首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In a previous work, we demonstrated that, in normotensive rats, AFL induced a marked hypotension due to a decrease in total peripheral resistances (TPR), partially secondary to the release of NO by the endothelium. NO did not, however, account for the total vasodilation produced by AFL in these rats. The aim of this study was to determine the involvement of the intracellular calcium mobilization in the vasorelaxant action induced by AFL in the rat aorta. In aorta of normotensive rats AFL (10, 20, 40 and 80 microg/ml) inhibited the sustained contractions induced by KCl (80 and 30 mM) and phenylephrine (Phe, 1 microM) with similar IC50 values (54 +/- 6, 52 +/- 4 and 65 +/- 4 microg/ml, respectively). The relaxing response induced by AFL against Phe-induced contractions was modified significantly by the endothelium removal (IC50 = 132 +/- 23 and 65 +/- 4 microg/ml, endothelium removed and intact endothelium aortic rings, respectively). Nevertheless, removal of the endothelium did not significantly change IC50 values when KCl (30 and 80 mM) was used as the contractile agent. The inhibitory effect induced by AFL on high (64.5 mM) K+-induced contraction was potentiated slightly (p < 0.05) by the decrease (from 2.5 to 0.3 mM, Ca2+) and attenuated by the increase (from 2.5 to 7.5 mM Ca2+) in the external [Ca2+]. In addition, in aortas from normotensive rats, AFL antagonized transient contractions induced in Ca2+-free media induced by 1 microM noradrenaline in a concentration-dependent manner, but not those induced by 20 mM caffeine. It is suggested that the remaining vasodilator effect of AFL in normotensive rats is probably due to an inhibition of Ca2+ influx and/or inhibition of intracellular Ca2+ mobilization from the noradrenaline-sensitive stores.  相似文献   

2.
The acute cardiovascular effects of an aqueous fraction of the ethanolic extract of the leaves (AFL) of Albizia inopinata (Harms) G. P. Lewis (Leguminosae) were studied in rats using a combined in vivo and in vitro approach. In conscious, unrestrained rats, AFL (5, 10 and 20 mg/kg(-1) body wt. i.v., randomly) produced a significant and dose-dependent hypotension associated with increases in heart rate and cardiac output, and with a strong reduction in total peripheral resistances. The hypotensive response to AFL (20 mg/kg(-1) body wt.) was attenuated significantly after nitric oxide (NO) synthase blockade (L-NAME, 20 mg/kg(-1) body wt. i.v.). Furthermore, under these conditions, the associated tachycardia was inhibited completely. In isolated rat aortic rings, increasing concentrations of AFL (10, 20, 40 and 80 microg/ml(-1)) were able to antagonize the effects of phenylephrine- (1 microM) and KCl- (80 mM) induced contractions (IC50 value 65 +/- 4 and 54 +/- 6 microg/ml(-1), respectively). The smooth muscle-relaxant activity of AFL was inhibited similarly either removal of the vascular endothelium or by L-NAME (10 and 100 microM), but was not affected significantly by atropine (1 microM) or indomethacin (10 microM). In isolated rat atrial preparations, AFL (30, 100, 300 and 500 microg/ml(-1)) produced concentration-related negative inotropic and chronotropic effects (IC50 value = 274 +/- 53 and 335 +/- 23 microg/ml(-1), respectively). These results suggest that in rats, the hypotensive effect of AFL is due to a peripheral vasodilation, at least partly secondary to the release of NO by the vascular endothelium. The direct cardio-depressant actions of AFL are of little importance in the systemic effects of the extract.  相似文献   

3.
The petroleum ether soluble fraction (SIPE) of the root extract of S. indicum was evaluated for the vasorelaxant activity using isolated rat aorta. SIPE up to 180 microg/ml concentration significantly inhibited phenylephrine- and KCl-induced contraction to the extent of 98.13 +/- 6.37 and 70.19 +/- 3.43% respectively in isolated rat aorta in a concentration dependent manner. The vasorelaxant activity was not blocked by propranolol (10 microM), atropine (1 microM) indomethacin (10 microM) and glibenclamide (10 microM). Influence of SIPE on phenylephrine-induced contractions in aortic preparations in absence of functional endothelium and on pre-incubating the tissue with L-NAME (300 microM) or methylene blue (10 microM) was also studied. SIPE at 180 microg/ml concentration could elicit partial relaxation in presence of L-NAME or methylene blue to the extent of 34.26 +/- 6.13 and 25.66 +/- 10.95% respectively. However, in absence of functional endothelium, SIPE exhibited little relaxation to the extent of 6.70 +/- 4.87%. These studies revealed that the vasorelaxant activity of SIPE was chiefly mediated through endothelium-dependent pathway.  相似文献   

4.
The vascular effects of 7-epiclusianone on the rat aorta were investigated. In the rat aortic rings with functional endothelia, 7-epiclusianone up to 10microM induced a concentration-dependent vasodilatation of the sustained contractions induced by phenylephrine (0.3microM). At concentrations higher than 10microM, 7-epiclusianone induced a concentration-dependent contraction in the aortic rings. The vasodilator effect of 7-epiclusianone was drastically decreased with L-NAME (100microM) as well as in endothelium-denuded aortic rings. Moreover, indomethacin (10microM) induced a significant shift to the left in the vasodilator but did not modify the vasoconstrictor effect of 7-epiclusianone. In arteries without pre-contraction, 7-epiclusianone (3-100microM) induced concentration-dependent contraction only in endothelium-intact and in the presence of L-NAME (100microM). This effect was inhibited by indomethacin (10microM) and ZM230487 (1microM), selective inhibitors of cyclooxygenase and of 5-lipoxygenase, respectively. We can conclude that at low concentrations 7-epiclusianone induces an endothelium-dependent vasodilator effect in rat aortic rings. At higher concentrations and in conditions where NO synthase was inhibited, 7-epiclusianone induces a vasocontractile effect. Nitric oxide seems to participate in the vasodilatation, while endothelial cyclooxygenase- and 5-lipoxygenase-derived products play a role in the vasoconstrictor effect.  相似文献   

5.
Solanum asterophorum Mart. (Solanaceae) is a shrub popularly known as "jurubeba-defogo" in the northeast of Brazil. In the present work, the methanol extract (SA-MeOH, 3750 microg/mL) and isojuripidine (10(-7) - 3 x 10(-4) M), a steroidal alkaloid obtained from S. asterophorum Mart. leaves, inhibited phasic contractions induced by both 1 microM histamine [IC50 = (225.8 +/- 47.4), g/mL and (3.5 +/- 0.8) x 10(-5) M] or 1 microm acetylcholine [IC50 = (112.5 +/- 20.6) microg/mL and (2.3 +/- 0.4) x 10(-5) M] in guinea-pig ileum, respectively. The extract and isojuripidine also relaxed the ileum (SA-MeOH, 1-750 microg/mL, and isojuripidine, 10(-9) - 3 x 10(-4) M) pre-contracted with 1 M histamine [EC50 = (101.1 +/- 17.4) microg/mL and (1.2 +/- 0.3) x 10(-6) M] or 1 microM acetylcholine [EC50 = (136.8 +/- 21.1) microg/mL and (1.9 +/- 0.4) x 10(-6) M] or 40 mm KCl [EC50 = (149.4 +/- 19.5) microg/mL and (1.8 +/- 0.7) x 10(-6) M], respectively, in an equipotent and concentration-dependent manner. This effect is probably due to inhibition of calcium influx through voltage-operated calcium (Ca(v)) channels. To confirm this hypothesis, we evaluated their effect on cumulative CaCl2 curves in depolarizing medium nominally without Ca2+. SA-MeOH (27, 243, 500, and 750 microg/mL) and isojuripidine (3 x 10(-8), 10(-6), 3 x 10(-5), and 3 x 10(-4) M) inhibited the contractions induced by CaCl2, in a concentration-dependent manner. The concentration-response curves to CaCl2, in the presence of SA-MeOH and isojuripidine, were shifted downward in relation to a control curve in a non-parallel manner resulting in reduction of the maximum effect [E(max) = (71.2 +/- 9.2); (57.4 +/- 9.2); (43.8 +/- 3.4); (41.5 +/- 2.4) and (90.6 +/- 4.8); (74.7 +/- 8.7); (66.4 +/- 3.9); (31.3 +/- 4.1)%, respectively]. SA-MeOH and isojuripidine present spasmolytic action in guinea-pig ileum due to a partially blockade of calcium influx through Ca(v) channels.  相似文献   

6.
Here we studied direct vasodilation induced by statins in isolated bovine coronary arteries. In rings of coronary bovine arteries preconstricted with prostaglandin F(2 alpha) (3 x 10(-8) - 10(-5)), lovastatin, simvastatin, atorvastatin and cerivastatin (3-30 microM) but not pravastatin induced concentration-dependent vasodilation. Removal of endothelium diminished response to simvastatin, cerivastatin and atorvastatin (30 microM) (67.4+/-4.56 vs. 22.7+/-8.14%, 96.9+/-2.27% vs. 54.5+/-6.86%, 67.4+/-4.01% vs. 34.6+/-5.66%, respectively). In presence of L-NAME (300 microM) or indomethacin (5 microM) responses to simvastatin, atorvastatin and cerivastatin, were also partially diminished. In contrast, lovastatin-induced vasorelaxation was not significantly affected by removal of endothelium (35.6+/-4.19% vs. 28.8+/-5.24%) or by pretreatment with L-NAME or indomethacin. In summary, with the exception of pravastatin, statins act as coronary vasodilators. Simvastatin, cerivastatin and atorvastatin but not lovastatin induced vasodilation displayed endothelium dependent- and endothelium-independent components. The endothelium-dependent effect of statins was mediated by NO and PGI(2), while the mechanism of smooth muscle cells-dependent component remains to be determined.  相似文献   

7.
We investigated the endothelial modulations in nitrate tolerance in isolated rabbit aorta. Nitrate tolerance was induced by a 72-h treatment with transdermal nitroglycerin (NTG, 0.4 mg/h) in conscious rabbits, which was verified by a 20-fold increase in the EC50 values [NTG tolerance (6.1 +/- 0.8) x 10(-7) M vs control (3.0 +/- 0.6) x 10(-8) M]. The relaxations to NTG in tolerant and nontolerant aortic strips were enhanced when their endothelia were denuded [E(-)]. In the presence of endothelium [E(+)], NTG-tolerant vessels were not tolerant to acetylcholine (ACh), which can release endothelial nitric oxide (NO), exogenous NO or 8-bromo (Br)-cGMP. In NTG-tolerant and nontolerant vessels with endothelium, concentration-response curves for NO were the same as those in endothelium-absent tolerant vessels. In both NTG-tolerant and nontolerant vessels, treatment with superoxide dismutase (SOD, 20 units/ml), an O2-. scavenger, unaffected the responses to NTG reduced in the presence of endothelium, but treatment with NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), an NO synthase (NOS) inhibitor, reversed these reductions. Thus, our data did not indicate that an increased endothelial superoxide O2-. production contributes to nitrate tolerance. Our study suggested that (i) an impaired biotransformation process from NTG to NO is responsible for the occurrence of nitrate tolerance and (ii) vascular response to NTG enhanced by endothelial removal is related to blocked endothelial NO release.  相似文献   

8.
We have determined that the methanolic extract of L. caulescens (MELc) produced a significant vasodilator effect in a concentration-dependent and endothelium-dependent manner. This relaxation was blocked by N(omega)-nitro-L-arginine methylester (L-NAME), indicating that MELc vasodilator properties are endothelium mediated due to liberation of nitric oxide (NO). In this paper we aimed to corroborate its mode of action. MELc effects on noradrenaline (NA)-induced contraction in isolated rat aortic thoracic rings with endothelium (+E), in the presence of atropine (0.1 microM) and 1-H-[1,2,4]-oxadiazolo-[4,3a]-quinoxalin-1-one (ODQ, 1 microM) were conducted. MELc relaxation curve was significantly shifted to the right in the presence of ODQ and atropine, thus confirming that its mode of action is related with activation of nitric oxide synthase (NOS) and the consequent increment in NO formation. Bio-guided study of MELc allowed the isolation of ursolic acid (UA, 50 mg) and ursolic-oleanolic acids mixture [UA/OA (7:3), 450 mg]. The relaxant effect of UA (0.038-110 microM) was evaluated in functional experiments. UA induced a significant relaxation in a concentration- and endothelium-dependent manner (IC(50)=44.15 microM) and did not produce a vasorelaxant effect on contraction evoked by KCl (80 mM). In addition, NA-induced contraction was significantly displaced to the right by UA (30 microM). In order to determine its mode of action, UA-induced relaxant effect was evaluated in the presence of atropine (0.1 microM), indomethacin (10 microM), L-NAME (100 microM) and ODQ (1 microM). Relaxation was blocked by L-NAME and ODQ. On the other hand, UA (3 microM) provoked a significant displacement to the left in the relaxation curve induced by sodium nitroprusside (SNP, 0.32 nM to 0.1 microM), but it was not significant in the presence of Carbamoyl choline (carbachol, 1 nM to 10 microM). These results indicate that UA-mediated relaxation is endothelium dependent, probably due to NO release, and the consequent activation of vascular smooth muscle soluble guanylate cyclase (sGC), a signal transduction enzyme that forms the second messenger cGMP.  相似文献   

9.
C M Teng  S M Yu  C C Chen  Y L Huang  T F Huang 《Life sciences》1990,47(13):1153-1161
Magnolol is an antiplatelet agent isolated from Chinese herb Magnolia officinalis. It inhibited norepinephrine (NE, 3 microM)-induced phasic and tonic contractions in rat thoracic aorta. At the plateau of the NE-induced tonic contraction, addition of magnolol caused two phases (fast and slow) of relaxation. These two relaxations were concentration-dependent (10-100 micrograms/ml), and were not inhibited by indomethacin (20 microM). The fast relaxation was completely antagonized by hemoglobin (10 microM) and methylene blue (50 microM), and disappeared in de-endothelialized aorta while the slow relaxation was not affected by the above treatments. Magnolol also inhibited high potassium (60 mM)-induced, calcium-dependent (0.03 to 3 mM) contraction of rat aorta in a concentration-dependent manner. 45Ca(+)+ influx induced by high potassium or NE was markedly inhibited by magnolol. Cyclic GMP, but not PGI2, was increased by magnolol in intact, but not in de-endothelialized aorta. It is concluded that magnolol relaxed vascular smooth muscle by releasing endothelium-derived relaxing factor (EDRF) and by inhibiting calcium influx through voltage-gated calcium channels.  相似文献   

10.
EDRF对PE引起的大鼠主动脉缩血管效应的作用   总被引:1,自引:0,他引:1  
本文研究EDRF(endothelium-derivedrelaxingfactor,EDRF)对PE(phenylephrine)引起的大鼠主动脉收缩反应的影响。内皮完整和去内皮的大鼠主动脉环悬挂于器官浴槽中,测定血管的张力和收缩速度的变化。所有的实验在消炎痛(indomethacin,10μmol/L)存在下进行。用美兰(methyleneblue,MB,10μmol/L)或左旋硝基精氨酸(NG-nitro-L-arginine,L-NNA,30μmol/L)处理内皮完整的大鼠主动脉环,PE的剂量-收缩张力曲线明显左移,EC30值均降低5倍,最大反应比率分别为1.6±0.4和1.6±0.5。在去内皮的大鼠主动脉环中,经MB和L-NNA处理后,仍可见EC30下降3倍,最大反应比率均为1.0±0.2。后者可能与血管平滑肌产生少量EDRF有关。我们的结果提示PE对血管的收缩反应也受血管内皮和平滑肌产生的EDRF的调控  相似文献   

11.
The involvement of nitric oxide and ATP in both spontaneous and electrically-induced nonadrenergic noncholinergic (NANC) motor activity with special interest in the apamin-sensitive mechanisms was studied in a guinea pig ileum model. Depending on the concentration (0.1 or 1 micromol/l), apamin, a blocker of the calcium-activated potassium channels and antagonist of ATP action, induced either TTX (0.1 micromol/l)-resistant increase in tone or contractions. SNP, a nitric oxide donor, applied cumulatively (0.1-100 micromol/l) evoked a concentration-dependent relaxation, the EC50 value being 0.39 +/- 0.12 micromol/l. At concentrations of 0.1 or 1 micromol/l, apamin decreased the SNP effects and shifted the concentration-response curves for SNP to the right. The EC50 value for SNP in the presence of apamin at a concentration of 0.1 micromol/l increased to 59.34 +/- 36.53 micromol/l. ATP (1 or 50 micromol/l) induced TTX-resistant contractions. The effects of ATP were reduced by apamin (1 micromol/l). The contractile effect of ATP occurred in the presence of SNP. SNP provoked relaxation on the background of ATP. The NANC responses to electrical stimulation (0.8 ms, 40 V, 2 or 20 Hz, 20 s) consisted of an initial relaxation phase followed by a phase of contractions, twitch-like and tonic. L-NNA (0.5 mmol/l), an inhibitor of nitric oxide syntheses, abolished the relaxation phase. L-arginine (0.5 mmol/l) restored it. Apamin (0.1 or 1 micromol/l) completely eliminated the relaxation phase and concentration-dependently inhibited the tonic contraction of the phase of contractions. The present findings indicate that the apamin-sensitive nitric oxide-evoked relaxation could be realized by calcium-activated potassium channels and that the apamin-sensitive ATP-induced contraction is mediated via contraction-producing P2 purinoceptors.  相似文献   

12.
The vasorelaxant effect of the lectin of Pisum arvense (PAL) seeds was investigated in rat aorta. PAL (10-100 μg/ml) was applied on aorta rings, with or without endothelium, pre-contracted with phenylephrine (Phe; 0.1 μM). Participation of endothelium derived relaxant factors was evaluated incubating the tissue with indomethacin (10 μM), L-nitro arginine methyl ester (L-NAME, 100 μM) and tetraethylammonium (TEA, 5 mM) before addition of PAL. The role of the lectin domain was investigated by addition of PAL into tissue in presence of glucose (3x 10?? M), or N-acetyl Dglucosamine (GlcNAc; 3 x 10?? M). The importance of extracellular calcium (Ca2?e) or interaction with muscarinic receptors in the relaxant effect was evaluated by addition of PAL into aorta rings containing calcium free solution (OCa) and atropine (1 μ M), respectively. PAL induced concentration-dependent relaxation in endothelized aorta (IC50 =58.38 ± 1.87 μg/ml), which was reversed by L-NAME and glucose. The lectin effect was totally inhibited when the preparation was inserted in OCa, but not in presence of atropine. Summarizing, our data showed a relaxant effect of PAL in isolated rat aorta rings in presence of endothelium, suggestive of interaction between the lectin carbohydrate binding sites with specific receptors located in vascular endothelial cells leading to nitric oxide synthase activation. This effect seems to require Ca2?e but is independent on muscarinic receptors interaction.  相似文献   

13.
Cardiovascular effects of an essential oil from the aerial parts of Mentha x villosa (OEMV) were tested in rats using a combined in vivo and in vitro approach. In non-anesthetized normotensive rats, OEMV (1, 5, 10, 20, 30 mg kg(-1) body wt., i.v.) induced a significant and dose-dependent hypotension (-3 +/- 1.8%; -6 +/- 0.7%; -40 +/- 6.7%; -58 +/- 3.8%; -57 +/- 2.1%, respectively) associated with decreases in heart rate (-1 +/- 0.3%; -9 +/- 0.9%; -17 +/- 3.2%; -72 +/- 3.1%; -82 +/- 1.4%, respectively). The hypotensive and bradycardic responses evoked by OEMV were attenuated and blocke by pre-treatment of the animals with atropine (2 mg kg(-1) body wt., i.v.). In isolated rat atrial preparations, OEMV (10, 100, 300, 500 microg ml(-1)) produced concentration-related negative chronotropic and inotropic effects (IC50 value = 229 +/- 17 and 120 +/- 13 microg ml(-1), respectively). In isolated rat aortic rings, increasing concentrations of OEM (10, 100, 300, 500 microg ml(-1)) were able to antagonize the effects of phenylephrine (1 microM), prostaglandin F2alpha (10 microM) and KCl (80 mM)-induced contractions (IC50 value = 255 +/- 9, 174 +/- 4 and 165 +/- 14 microg ml(-1), respectively). The vasorelaxant activity induced by OEMV was attenuated significantly by either endothelium removal (IC50 value = 304 +/- 9 microg ml(-1)), NG-nitro L-arginine methyl ester (L-NAME) 100 microM (IC50 value=359 +/- 18 microg ml(-1)), L-NAME 300 microM (IC50 value = 488 +/- 20 microg ml(-1)) or indomethacin 10 microM (IC50 value = 334 +/- 18 microg ml(-1)). However, it was not affected by atropine 1 microM (IC50 value = 247 +/- 12 microg ml(-1)). Furthermore, the hypotensive response induced by OEMV was attenuated significantly after nitric oxide (NO) synthase blockade (L-NAME, 20 mg kg(-1) body wt., i.v.), while bradycardia was not altered. The results suggest that the hypotensive effect induced by OEMV is probably due to its direct cardiodepressant action and peripheral vasodilation, which can be attributed to both endothelium-dependent (via EDRFs, at least NO and prostacyclin) and endothelium-independent mechanisms (such as Ca2+ channel blockade).  相似文献   

14.
The vasodilator effect of the ethanolic extract of leaves from Hancornia speciosa Gomes (HSE) was evaluated in superior mesenteric artery rings. HSE produced a concentration-dependent vasodilation (IC50 = 10.8 +/- 4.0 microg/mL) in arterial rings pre-contracted with phenylephrine, which was completely abolished in endothelium-denuded vessels. Endothelium-dependent vasodilation induced by HSE was strongly reduced by L-NAME (100 microM), a nitric oxide (NO) synthase inhibitor, but neither by atropine, a muscarinic receptor antagonist (1 microM), nor by indomethacin (10 microM), a cyclooxygenase inhibitor. In rings pre-contracted with 80 mM KCl, the vasodilator effect of HSE was shifted to the right and was completely abolished in the presence of L-NAME (100 microM). Similar effects were obtained in mesenteric rings pre-contracted with phenylephrine in the presence of KCl 25 mM alone or in addition to 100 microM L-NAME. In addition, BaCl2 (1 mM) dramatically reduced the vasodilation induced by HSE. Together, these findings led us to conclude that HSE induces an endothelium-dependent vasodilation in rat mesenteric artery, by a mechanism dependent on NO, on the activation of potassium channels and endothelium-derived hyperpolarizing factor release. Rutin, identified as a major peak in the HPLC fingerprint obtained for HSE, might contribute for the observed vasodilator effect, since it was able to induce an endothelium-dependent vasodilation in rat superior mesenteric arteries.  相似文献   

15.
《Life sciences》1997,61(15):PL211-PL219
The aim of this study was to evaluate the effects of Spirulina maxima on vasomotor responses of aorta rings from male Wistar rats fed on a purified diet. For this purpose, the animals (weighing 200–240 g) were allocated randomly in two groups. One receiving purified control diet (A) and the other receiving purified diet containing 5% Spirulina (B). Purified diets were according to American Institute of Nutrition guidelines and adjusted to Spirulina protein content. All animals were fed (20 g/day/rat) during two weeks, receiving water ad libitum and 12 h. lightdark cycles. Spirulina maxima effects were evaluated by concentration-response (CR) curves of aorta rings with or without endothelium to phenylephrine (PE), both in presence and absence of indomethacin (Indom) or indomethacin plus L-NAME (Indom. + L-NAME), and to carbachol (CCh). Aorta rings with endothelium from group B showed, relative to corresponding rings from group A: 1) a significant decrease in the maximal tension developed in response to PE. 2) this decrease was reverted by Indom. 3) Indom. + L-NAME induced an additional increase in the contractile responses to PE. 4) a significant shift to the left of the CR curve to CCh. No significant differences were observed in the tension developed in response to PE in rings without endothelium from either group. These results suggest that Spirulina maxima may decrease vascular tone by increasing the synthesis and release of both a vasodilating cyclooxygenase-dependent product of arachidonic acid and nitric oxide, as well as by decreasing the synthesis and release of a vasoconstricting eicosanoid from the endothelial cells. © 1997 Elsevier Science Inc.  相似文献   

16.
The presence of histamine H(3) receptors was evaluated on the rat aorta endothelium. In the presence of pyrilamine (1 nM, 7 nM, 10 nM) or thioperamide (1 nM, 10 nM, 30 nM) the concentration-response curve for histamine-induced (0.1 nM - 0.01 mM) endothelium-dependent rat aorta relaxation was shifted to the right without significant change of the E(max) indicating competitive antagonism by pyrilamine (pA(2) = 9.33 +/- 0.34, slope = 1.09 +/- 0.36) or thioperamide (pA(2) =9.31 +/- 0.16, slope=0.94 +/- 0.10). Cimetidine (1 muM) did not influence histamine-induced endothelium-dependent rat aorta relaxation. In the presence of thioperamide (1 nM, 10 nM, 30 nM) the concentration-response curve for (R)alpha-MeHA-induced (0.1 nM - 0.01 mM) endothelium-dependent relaxation was shifted to the right without significant change of E(max) indicated competitive antagonism by thioperamide (pA(2) = 9.21 +/- 0.4, slope = 1.03 +/- 0.35). Pyrilamine (100 nM) or cimetidine (1 muM) did not influence (R)alpha-MeHA-induced endothelium-dependent rat aorta relaxation. These results suggest the presence of a heterogenous population of histamine receptors, H(1) and H(3), on rat aorta endothelium.  相似文献   

17.
The effect of Indian red scorpion (Mesobuthus tamulus concanesis, Pocock; MBT) venom was investigated on isolated rat right atrial preparations. MBT venom (0.001-3.0 micrograms/ml) exhibited a peculiar concentration-response pattern with respect to rate. The venom concentrations between 0.001-0.01 microgram/ml increased the atrial rate (phase I), followed by a relative decrease with 0.03-0.3 microgram/ml (phase II), and then an abrupt increase with 0.6-3.0 micrograms/ml (phase III). On the other hand, the force was unaltered by venom at phases I and II, while an increase was seen at phase III (3.0 micrograms/ml). Propranolol (0.1 microM) completely blocked the cardiostimulant action of venom at phase III. Further, this stimulant action of venom was absent in atria obtained from reserpinized animals. Pretreatment with atropine (0.3 microM), produced tachycardia at concentrations 0.1-0.3 microgram/ml of venom. But, hexamethonium (30 microM) had no influence on the venom (0.1 microgram/ml)-induced alterations in rate. However, MBT venom increased the acetylcholinesterase (AChE) activity (2-3 fold) in a concentration-dependent manner. Tetrodotoxin (2 microM), did not block the increase in rate produced by 0.01 microgram/ml of venom. Results suggest that, MBT venom-induced alterations of cardiac rhythmicity are mediated through cholinergic as well as adrenergic mechanisms depending upon the concentrations. The modulation of atrial rate at very low concentrations may be due to the direct action of venom on the atrium.  相似文献   

18.
The present study was undertaken to characterize the contractile effects of vanadate on thoracic aorta rings from virgin and term-pregnant rats. Vanadate caused concentration-dependent contraction in rat aortic rings with an EC50 (concentration producing 50% maximum response) of 0.10 mM. Contractions in response to vanadate were equivalent to the ones measured with 1 M phenylephrine. The effects of vanadate were not affected by indomethacin (up to 10 M), an inhibitor of prostanoid cyclooxygenase, but were blocked in a concentration-dependent manner by staurosporine (0.1–1.0 M), an inhibitor of protein kinase C. Vanadate exhibited a significant decrease of contractile responses in aorta of pregnant as compared to virgin rats. When aortic rings were bathed in presence of different concentrations of vanadate, the concentration-response curve to phenylephrine was shifted to the left, but maximum response was not affected. The potentiation of the contractions to phenylephrine by vanadate was significantly more prominent in aorta of virgin than of pregnant rats. These results suggest that the contractile effect of vanadate on rat aorta is independent of endogenous prostanoids and may be mediated by protein kinase C-dependent pathway. These results also show that the contractile response to vanadate on the rat aorta is impaired during pregnancy.  相似文献   

19.
We tested the hypothesis that increases in force at a given cytosolic Ca(2+) concentration (i.e., Ca(2+) sensitization) produced by muscarinic stimulation of canine tracheal smooth muscle (CTSM) are produced in part by mechanisms independent of changes in regulatory myosin light chain (rMLC) phosphorylation. This was accomplished by comparing the relationship between rMLC phosphorylation and force in alpha-toxin-permeabilized CTSM in the absence and presence of acetylcholine (ACh). Forces were normalized to the contraction induced by 10 microM Ca(2+) in each strip, and rMLC phosphorylation is expressed as a percentage of total rMLC. ACh (100 microM) plus GTP (1 microM) significantly shifted the Ca(2+)-force relationship curve to the left (EC(50): 0.39 +/- 0.06 to 0.078 +/- 0.006 microM Ca(2+)) and significantly increased the maximum force (104.4 +/- 4.8 to 120.2 +/- 2.8%; n = 6 observations). The Ca(2+)-rMLC phosphorylation relationship curve was also shifted to the left (EC(50): 1.26 +/- 0.57 to 0.13 +/- 0.04 microM Ca(2+)) and upward (maximum rMLC phosphorylation: 70.9 +/- 7.9 to 88.5 +/- 5. 1%; n = 6 observations). The relationships between rMLC phosphorylation and force constructed from mean values at corresponding Ca(2+) concentrations were not different in the presence and absence of ACh. We find no evidence that muscarinic stimulation increases Ca(2+) sensitivity in CTSM by mechanisms other than increases in rMLC phosphorylation.  相似文献   

20.
We investigated whether A(3) adenosine receptor (A(3)AR) is involved in endothelium-mediated contraction through cyclooxygenases (COXs) with the use of wild-type (WT) and A(3) knockout (A(3)KO) mice aorta. A(3)AR-selective agonist, Cl-IBMECA, produced a concentration-dependent contraction (EC(50): 2.9 +/- 0.2 x 10(-9) M) in WT mouse aorta with intact endothelium (+E) and negligible effects in A(3)KO +E aorta. At 10(-7) M, contractions produced by Cl-IBMECA were 29% in WT +E, while being insignificant in A(3)KO +E aorta. Cl-IBMECA-induced responses were abolished in endothelium-denuded tissues (-E), in both WT and A(3)KO aorta. A(3)AR gene and protein expression were reduced by 74 and 72% (P < 0.05), respectively, in WT -E compared with WT +E aorta, while being undetected in A(3)KO +E/-E aorta. Indomethacin (nonspecific COXs blocker, 10(-5) M), SC-560 (specific COX-1 blocker, 10(-8) M), SQ 29549 (thromboxane prostanoid receptor antagonist, 10(-6) M), and furegrelate (thromboxane synthase inhibitor, 10(-5) M) inhibited Cl-IBMECA-induced contraction significantly. Cl-IBMECA-induced thromboxane B(2) production was also attenuated significantly by indomethacin, SC-560, and furegrelate in WT +E aorta, while having negligible effects in A(3)KO +E aorta. NS-398 (specific COX-2 blocker) produced negligible inhibition of Cl-IBMECA-induced contraction in both WT +E and A(3)KO +E aorta. Cl-IBMECA-induced increase in COX-1 and thromboxane prostanoid receptor expression were significantly inhibited by MRS1523, a specific A(3)AR antagonist in WT +E aorta. Expression of both A(3)AR and COX-1 was located mostly on endothelium of WT and A(3)KO +E aorta. These results demonstrate for the first time the involvement of COX-1 pathway in A(3)AR-mediated contraction via endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号