共查询到20条相似文献,搜索用时 79 毫秒
1.
生物降解材料聚乳酸的研究进展 总被引:2,自引:0,他引:2
介绍了可生物降解材料聚乳酸的合成、改性、应用以及聚乳酸生物降解性的研究进展,进行了较详细地综述和总结,并对聚乳酸的发展前景进行了展望。 相似文献
2.
聚乙二醇-聚乳酸嵌段共聚物在药物递送系统中的应用 总被引:1,自引:0,他引:1
聚乙二醇-聚乳酸嵌段共聚物具备良好的生物相容性和生物可降解性,是良好的纳米级药物载体。嵌段共聚物具有载药能力强、粒径小、体内循环时间长、主动靶向性和被动靶向性等特点,因此在药物递送系统中得到广泛应用。简要介绍了聚乙二醇-聚乳酸嵌段共聚物的合成和性质,及其作为脂质体、胶束、微球等载体在药物递送系统中的最新进展。 相似文献
3.
聚乳酸(polylactic acid, PLA)因其良好的理化性能、生物相容性和生物降解性而备受关注,已被认为是石油基塑料最具潜力的替代者,但在实际应用中仍然存在降解缓慢循环周期长的问题,因此对PLA的生物降解深入研究对于解决塑料垃圾污染和缓解能源危机至关重要。近年来,有关微生物(放线菌、细菌和真菌)和酶(蛋白酶、脂肪酶、酯酶和角质酶)降解PLA的研究已经取得了一定的进展。本文从降解微生物、降解酶和降解机制等方面综述了PLA生物降解的研究进展,并展望了PLA生物降解研究未来的发展趋势。 相似文献
4.
本文研究了玉米淀粉—丙烯酸丁酯接枝共聚物的溶解性,抗微生物侵蚀性,流变性及表面性能。对这种接枝共聚物的应用前景进行了探讨。 相似文献
5.
通过聚乳酸二元醇和聚乳酸-聚己内酯共聚物二元醇与六亚甲基二异氰酸酯(HDI)三聚体交联反应合成了一系列生物基热固性聚氨酯(Bio-PUs)。利用傅里叶红外(FTIR)、差示扫描量热分析(DSC)、热失重分析(TGA)、万能拉伸机和细胞毒性等测试方法对获得的聚乳酸基聚氨酯进行了表征。结果表明,与聚乳酸二元醇相比,聚乳酸-聚己内酯共聚物二元醇降低了生物基热固性聚氨酯的玻璃化温度(Tg),提高了热固性聚氨酯的热稳定性;且聚乳酸-聚己内酯型聚氨酯的力学性能和形状记忆性能更为优异。其中,聚乳酸-聚己内酯共聚物二元醇分子量为3 000时得到的热固性聚氨酯(Bio-PU2-3000)的杨氏模量为277.7 MPa,伸长率为230%;聚乳酸-聚己内酯共聚物二元醇分子量为1 000得到的热固性聚氨酯(Bio-PU2-1000)在人体体温下的形变回复时间仅为93 s。另外,通过显微镜观察到细胞在含聚乳酸基热固性聚氨酯的培养液中生长状态良好,表明制备得到的生物基聚氨酯无细胞毒性。 相似文献
6.
聚乙二醇-聚乳酸嵌段共聚物(PEG-PLA)及其端基衍生物纳米粒可以增强载药量、降低突释效应、提高药物在血液中的循环时间、提高生物利用度,并且其粒径更小,能以被动靶向的方式聚集于炎症或靶向部位。本文综述了PEG-PLA嵌段共聚物纳米粒的最新进展,包括PEG-PLA的合成、纳米粒的制备、释药特性及在药物制剂中的应用。 相似文献
7.
聚乳酸材料在不同土壤环境中生物降解的菌群结构分析 总被引:1,自引:0,他引:1
【目的】评价聚乳酸(Polylactic acid,PLA)材料在不同土壤环境中自然降解的效果,通过对3种不同土壤菌群结构的分析,找到能够对聚乳酸材料有降解作用的优势菌群。【方法】通过扫描电镜、断裂拉伸强度和CO2释放量测定来评价3种土壤对PLA材料的降解效果,并运用高通量测序技术,对3种土壤细菌群落进行基因组测序分析,检测3个样本细菌群落的差异性。【结果】PLA材料在沼泽地、芒果林地和稻田中的生物降解率分别为13.7%、10.6%和4.5%。3种土壤的样品分别获得11 110、11 236和8 848个OTU,共涉及细菌域的9个主要门和16个主要科。其中沼泽地土壤的微生物群落丰富度和多样性最高,稻田土壤最低。【结论】结合土壤的降解效果,土壤中生物群落丰富度和多样性越高,对PLA材料的降解作用越好。同时变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)是降解聚乳酸材料的优势菌群。在科水平上,黄杆菌科(Flavobacteriaceae)、丛毛单胞菌科(Comamonadaceae)和噬纤维菌科(Cytophagaceae)的微生物对聚乳酸材料的降解最有潜力。这一研究成果为能有效降解聚乳酸材料的微生物资源的开发提供了理论依据。 相似文献
8.
淀粉-接枝-聚丙烯酰胺共聚物的絮凝性能 总被引:1,自引:0,他引:1
用Ce~(4+)盐作引发剂合成了淀粉-接枝-聚丙烯酰胺(S-g-PAM) 共聚物,比较了S-g-PAM和聚丙烯酰胺(PAM)对钠型膨润土悬浮液的絮凝作用。作为絮凝剂,S-g-PAM的某些性能优于PAM。S-g-PAM对悬浮在醋酸溶液中的偏苯三酸晶体有较好的絮凝性能。 相似文献
9.
二氧化碳(CO2) 是主要的温室气体,同时也是一种取之不尽、用之不竭的廉价碳氧资源.以二氧化碳为原料合成可生物降解的脂肪族聚碳酸酯是二氧化碳固定和利用领域的重要课题,其中最受关注的是由二氧化碳和环氧丙烷共聚制备聚丙撑碳酸酯(PPC) .由于其具备良好的生物降解性能,成本相对较低,且大量利用了二氧化碳(聚合物中CO2 的重量超过40%),而受到高度重视. 相似文献
10.
11.
Social and economic development has driven considerable scientific and engineering efforts on the discovery, development and utilization of polymers. Polylactic acid (PLA) is one of the most promising biopolymers as it can be produced from nontoxic renewable feedstock. PLA has emerged as an important polymeric material for biomedical applications on account of its properties such as biocompatibility, biodegradability, mechanical strength and process ability. Lactic acid (LA) can be obtained by fermentation of sugars derived from renewable resources such as corn and sugarcane. PLA is thus an eco-friendly nontoxic polymer with features that permit use in the human body. Although PLA has a wide spectrum of applications, there are certain limitations such as slow degradation rate, hydrophobicity and low impact toughness associated with its use. Blending PLA with other polymers offers convenient options to improve associated properties or to generate novel PLA polymers/blends for target applications. A variety of PLA blends have been explored for various biomedical applications such as drug delivery, implants, sutures and tissue engineering. PLA and their copolymers are becoming widely used in tissue engineering for function restoration of impaired tissues due to their excellent biocompatibility and mechanical properties. The relationship between PLA material properties, manufacturing processes and development of products with desirable characteristics is described in this article. LA production, PLA synthesis and their applications in the biomedical field are also discussed. 相似文献
12.
Mohamed H. El-Newehy Ali Aldalbahi Badr M. Thamer Meera Moydeen Abdulhameed 《Luminescence》2024,39(3):e4688
Nano-biocomposites of inorganic and organic components wereprepared to produce long-persistent phosphorescent artificial nacre-like materials. Biodegradable polylactic acid (PLA), graphene oxide (GO), and nanoparticles (13–20 nm) of lanthanide-doped aluminate pigment (NLAP) were used in a simple production procedure of an organic/inorganic hybrid nano-biocomposite. Both polylactic acid and GO nanosheets were chemically modified to form covalent and hydrogen bonding. The high toughness, good tensile strength, and great endurance of those bonds were achieved by their interactions at the interfaces. Long-persistent and reversible photoluminescence was shown by the prepared nacre substrates. Upon excitation at 365 nm, the nacre substrates generated an emission peak at 517 nm. When ultraviolet light was shone on luminescent nacres, they displayed a bright green colour. The high superhydrophobicity of the generated nacres was obtained without altering their mechanical characteristics. 相似文献
13.
以荔枝新品种‘贵妃红’和‘草莓荔’与10种砧木为试材,对各砧穗组合的嫁接成活率及嫁接苗田间生长指标进行测定及比较。结果表明,不同砧穗组合间嫁接成活率以及嫁接苗田间生长势存在明显差别,‘贵妃红’以钦州红荔、黑叶、禾荔为砧木的嫁接成活率分别达80.0%、78.0%和74.0%,‘草莓荔’以禾荔为砧木的嫁接成活率最高,达82.0%。综合其成活率及嫁接苗生长状况等指标,‘贵妃红’宜以黑叶、禾荔、钦州红荔、白腊为砧木进行嫁接,而‘草莓荔’宜以黑叶、禾荔、钦州红荔、镇奉为砧木进行嫁接。 相似文献
14.
In this study, for the first time, calcium oxide (CaO)/polylactic acid nanoscaffolds were synthesized by co‐precipitation assistant reverse micelles method. The physical and chemical (physicochemical) properties of the structures as dental resin composites were also studied. Nanocomposite materials as primary and basic dental compounds can be conveniently applied as dental filling materials with a high esthetic quality. In this research nanoscaffolds act as a bed for nanoparticles and improve the mechanical and chemical (mechanochemical) properties, CaO nanoparticles were loading in polylactic acid nanoscaffold as a bioactivity polymer for usage in the dental resin composites. Mechanical properties of the dental resin composite containing CaO/polylactic acid nanoscaffold were calculated: the flexural strength (137.2 MPa), modulus (12.9GPa) and compressive strength (344.2 MPa). Potential of the basic nanoparticle and the products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), ultraviolet‐visible spectroscopy (UV‐visible) and atomic force microscopy (AFM) showed the size of the optimized nanostructures was about 85 to 120 nm. According to TGA results of polylactic acid nanofibers with thermal stability below 300°C these high thermal stability materials can be used as dental resin composites. 相似文献
15.
介绍了就地成形载药装置概念、形成机制和应用前景并以PLA/PLGA及PLA/PLGA与PEG的三嵌段共聚物为基质的就地成形植入物,在其形成机理、制备条件、降解特性方面的研究进展进行了综述。结论是由这两类聚合物制备的就地成形植入物在药物缓释方面有着许多优良特性,但同时也有各自不足之处,它们是处于进一步研究发展阶段的新型药物缓释装置。 相似文献
16.
Altering the cell permeability by treating Cryptococcus neoformans with 1% (v/v) hexane stimulated the yield of transformation of n-pentadecane to the corresponding dioic acid, tridecane 1,13-dicarboxylic acid (DC-15); however, the biotransformation process was inhibited by the elevated levels of DC-15. To avoid product inhibition, a continuous process with immobilized cells was performed, and the result showed that the yield of DC-15 production was increased up to fivefold as compared with the batch type of DC-15 production. To integrate the product recovery process with the biotransformation, Amberlite XAD-2 resin was used for adsorbing DC-15 and configured as an external in situ product recovery system. The continuous process described in this study is adaptable for large-scale production of DC-15. 相似文献
17.
摘要:天然和合成聚合物因优良的特性引起了越来越多研究者的兴趣,并已被广泛用于人类的日常生活中。聚苹果酸(Polymalic acid,PMLA)一种天然的高分子聚酯材料,具有良好的生物相容性和完全生物降解性,其衍生物同样具有优异的生物学性能,被广泛应用于众多领域中。本文就聚苹果酸及其衍生物的结构、性质和合成方法进行了概述,并全面总结了其在制药和其他领域的应用研究现状,最后对未来发展方向进行了展望。 相似文献
18.
Jing‐Wen Liu Da‐Yi Deng Ying Yu Fang‐Fei Liu Bi‐Xia Lin Yu‐Juan Cao Xiao‐Gang Hu Jian‐Zhong Wu 《Luminescence》2015,30(1):18-25
The determination of hormone‐binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA‐binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3‐mercaptopropionic acid (MPA) to 4‐amino‐2‐hydroxybenzoic acid (PAS), using 1‐ethyl‐3‐(3‐dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS–CdSe QDs were used to detect SA‐binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS–CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS–CdSe QDs on cytosolic Ca2+ levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS–CdSe QDs had similar effects on the trend in cytosolic‐free Ca2+ concentrations, suggesting that the PAS–CdSe QDs maintained the bioactivity of SA. To summarize, PAS–CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
Polylactic acid (PLA) is an environmentally friendly, degradable polymer which has been suggested for use as a matrix for controlled release of herbicides. The growth stimulation and yield improvement potential of low molecular weight (MW), poly(D,L-lactic acid) and D,L-lactide were evaluated using preplant soil incorporation with soybeans (Glycine max (L.) Merrill). Greenhouse studies confirmed that both lactide and PLA increased soybean leaf area, pod number, bean number and bean and plant dry weight. Soybean seed yield was increased most dramatically (130%; 2.3 fold) by weekly 30 ppm lactide addition and also by single addition of low MW (3500 Daltons) PLA (40.6%; 1.4 fold). Low levels of PLA were stimulatory (15–30 ppm), while higher levels were inhibitory, with some interaction with growth conditions being evident. The stimulatory component was most readily provided by weekly lactide addition, but was also provided by slow-release, hydrolytic breakdown of PLA in the soil, with 3500 Daltons MW being better than higher MW PLA. In field studies at two locations, PLA (16.8 and 45.8 kg ha–1) increased soybean plot yield as much as 18%, being reflected in increases in both growth and per plant yield components (plant dry wt, seed number, seed dry wt, and number of branch pods and seeds). The levels used in field studies were selected to be similar to the level of a typical carrier used in slow release of herbicides. This study suggests that use of PLA as an encapsulation matrix for herbicides could provide reduced environmental impact and improved weed control, while at the same time increasing yield of soybeans through release of a plant growth stimulant in the form of oligomeric or monomeric lactic acid. 相似文献
20.
Grafting to manage infections of top stunting and necrogenic strains of cucumber mosaic virus in tomato 下载免费PDF全文
Cucumber mosaic virus (CMV) lists among the most important etiological agents of tomato diseases. Some isolates of CMV function as helper virus for replication, encapsidation and transmission of satellite RNAs (satRNA), which may exacerbate symptoms induced by CMV in certain hosts. Outbreaks of CMV strains supporting hypervirulent variants of satRNAs are recurrent in tomato with devastating effects on crop production and efficient control measures are still unavailable. In this study, we examined the dynamics of infection of the CMV strains tomato top stunting (TTS) and 77 supporting replication of satRNA variants that codetermine top stunting (TTS‐satRNA) and necrotic (77‐satRNA) phenotypes in two tomato cultivars denoted Solanum lycopersicum Manduria (Sl‐Ma) and S. lycopersicum UC82 (Sl‐UC). Sl‐Ma but not Sl‐UC recovered from disease symptoms induced by CMV‐TTS while both the cultivars succumbed to the infection of CMV‐77 and its necrogenic satRNA. Ability to recover of the Sl‐Ma plants was transmitted by grafting to the susceptible genotype Sl‐UC. More interestingly, recovery was observed also against the challenge inoculation of CMV plus 77‐satRNA in plants grafted on Sl‐Ma and in self‐grafted plants of both the Sl‐Ma and Sl‐UC cultivars. Analysis of small RNAs and genes of the defence plant response based on RNA interference (RNAi) suggested that RNAi is involved in the recovery of Sl‐Ma against CMV with hypervirulent satRNAs and in scions grafted on this rootstock. The response of Sl‐Ma to the inoculation of CMV‐77 plus 77‐satRNA was compared with that of the transgenic tomato line S. lycopersicum transgenic line UCTC5.9.2 that expresses constitutively the benign variant of the satRNA denoted Tfn‐satRNA. Comparative analysis suggested that the response may operate via similar mechanisms, which involve RNAi, the graft and the presence of the satRNA. 相似文献