首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Y Lo  M J Selby    J H Ou 《Journal of virology》1996,70(8):5177-5182
Hepatitis C virus has three structural genes named C, E1, and E2. The C gene encodes the core (capsid) protein and the E1 and E2 genes encode the envelope proteins. In an immunoprecipitation experiment, the E1 protein was found to be precipitated by an anti-core antibody in the presence but not in the absence of the core protein, indicating that the E1 protein can interact with the core protein. This interaction is independent of whether the E1 and the C genes are linked in cis or separated in different DNA constructs for expression. The interaction between the core and the E1 proteins is confirmed by the observation that a hybrid protein derived from the core protein and the tissue plasminogen activator is localized in the nucleus in the absence of the E1 protein and in the perinuclear region in the presence of the E1 protein. Deletion-mapping studies indicate that the carboxy-terminal sequences of both the core and the E1 proteins are important for their interaction. Since little E1 sequence is exposed on the cytosolic side of the membrane of the endoplasmic reticulum, the interaction between the core and the E1 proteins most likely takes place in the endoplasmic reticulum membrane. The E2 protein could not be coprecipitated with the core protein by the anti-core antibody in a similar assay and likely does not interact with the core protein. The implications of these findings on the morphogenesis of the hepatitis C virus virion are discussed.  相似文献   

2.
3.
Recombinant proteins are commonly expressed in fusion with an affinity tag to facilitate purification. We have in the present study evaluated the possible use of the human glutaredoxin 2 (Grx2) as an affinity tag for purification of heterologous proteins. Grx2 is a glutathione binding protein and we have shown in the present study that the protein can be purified from crude bacterial extracts by a one-step affinity chromatography on glutathione-Sepharose. We further showed that short peptides could be fused to either the N- or C-terminus of Grx2 without affecting its ability to bind to the glutathione column. However, when Grx2 was fused to either the 27 kDa green fluorescent protein or the 116 kDa beta-galactosidase, the fusion proteins lost their ability to bind glutathione-Sepharose. Insertion of linker sequences between the Grx2 and the fusion protein did not restore binding to the column. In summary, our findings suggest that Grx2 may be used as an affinity tag for purification of short peptides and possibly also certain proteins that do not interfere with the binding to glutathione-Sepharose. However, the failure of purifying either green fluorescent protein or beta-galactosidase fused to Grx2 suggests that the use of Grx2 as an affinity tag for recombinant protein purification is limited.  相似文献   

4.
Vasodilators such as sodium nitroprusside, nitroglycerin and various prostaglandins are capable of inhibiting platelet aggregation associated with an increase of either cGMP or cAMP. In our studies with intact platelets, prostaglandin E1 and sodium nitroprusside stimulated the phosphorylation of several proteins which could be distinguished from proteins known to be phosphorylated by a calmodulin-regulated protein kinase or by protein kinase C. Prostaglandin E1 (10 microM) or dibutyryl cAMP (2 mM) stimulated the phosphorylation of proteins with apparent relative molecular masses, Mr, of 240,000, 68,000, 50,000, and 22,000 in intact platelets. These proteins were also phosphorylated in response to low concentrations (1-2 microM) of cAMP in a particulate fraction of platelets. In intact platelets, sodium nitroprusside (100 microM) and the 8-bromo derivative of cGMP (2 mM) increased the phosphorylation of one protein of Mr 50,000 which was also phosphorylated in response to low concentrations (1-2 microM) of cGMP in platelet membranes. An additional protein (Mr 24,000) appeared to be phosphorylated to a lesser degree in intact platelets by prostaglandin E1 and sodium nitroprusside. Since the phosphorylation of the protein of Mr 50,000 was stimulated both in intact platelets by cyclic-nucleotide-elevating agents and cyclic nucleotide analogs, as well as in platelet membranes by cyclic nucleotides, this phosphoprotein was analyzed by limited proteolysis, tryptic fingerprinting and phosphoamino acid analysis. These experiments indicated that the 50-kDa proteins phosphorylated by sodium nitroprusside and prostaglandin E1 were identical, and that the peptide of the 50-kDa protein phosphorylated by both agents was also the same as the peptide derived from the 50-kDa protein phosphorylated in platelet membranes by cGMP- and cAMP-dependent protein kinases, respectively. Regulation of protein phosphorylation mediated by cAMP- and cGMP-dependent protein kinases may be the molecular mechanism by which those vasodilators, capable of increasing either cAMP or cGMP, inhibit platelet aggregation.  相似文献   

5.
The U1 small nuclear ribonucleoprotein 70-kDa protein, a U1 small nuclear ribonucleoprotein-specific protein, has been shown to have multiple roles in nuclear precursor mRNA processing in animals. By using the C-terminal arginine-rich region of Arabidopsis U1-70K protein in the yeast two-hybrid system, we have identified an SC35-like (SR33) and a novel plant serine/arginine-rich (SR) protein (SR45) that interact with the plant U1-70K. The SR33 and SR45 proteins share several features with SR proteins including modular domains typical of splicing factors in the SR family of proteins. However, both plant SR proteins are rich in proline, and SR45, unlike most animal SR proteins, has two distinct arginine/serine-rich domains separated by an RNA recognition motif. By using coprecipitation assays we confirmed the interaction of plant U1-70K with SR33 and SR45 proteins. Furthermore, in vivo and in vitro protein-protein interaction experiments have shown that SR33 protein interacts with itself and with SR45 protein but not with two other members (SRZ21 and SRZ22) of the SR family that are known to interact with the Arabidopsis full-length U-70K only. A Clk/Sty protein kinase (AFC-2) from Arabidopsis phosphorylated four SR proteins (SR33, SR45, SRZ21, and SRZ22). Coprecipitation studies have confirmed the interaction of SR proteins with AFC2 kinase, and the interaction between AFC2 and SR33 is modulated by the phosphorylation status of these proteins. These and our previous results suggest that the plant U1-70K interacts with at least four distinct members of the SR family including SR45 with its two arginine/serine-rich domains, and the interaction between the SR proteins and AFC2 is modulated by phosphorylation. The interaction of plant U1-70K with a novel set of proteins suggests the early stages of spliceosome assembly, and intron recognition in plants is likely to be different from animals.  相似文献   

6.
A hybrid protein between IFN-gamma and IL-2   总被引:2,自引:0,他引:2  
M Seno  S Hinuma  H Onda  K Igarashi 《FEBS letters》1986,199(2):187-192
The complementary DNAs encoding human interferon-gamma (IFN-gamma) and human interleukin-2 (IL-2), two different proteins involved in the same immune system, were fused to code a hybrid protein, which was expressed in E. coli to investigate the interactions of these two proteins at the molecular level. Through immunoprecipitation analysis, this protein was revealed to be of about 31 kDa, which was expected from nucleotide sequencing, and to have the antigenicities of both IFN-gamma and IL-2. The extract from bacteria expressing this hybrid protein showed at least two biological activities: an antiviral activity derived from IFN-gamma and the ability to support the growth of natural killer (NK) cells derived from IL-2. Comparing the enhancement of NK cell activity of this hybrid protein with IFN-gamma and IL-2, this hybrid protein appears to conserve each activity almost completely without diminishing the other.  相似文献   

7.
Among protein serine/threonine kinases, the CDC2 proteins are both well characterized as protein serine/threonine kinases and are functionally involved in the control of cell division. Protein serine/threonine kinase sequences were analysed using Fourier transform of the coded sequences. Characteristic code/frequency pairs were extracted from a set of well defined protein serine/threonine kinases. The characteristic frequencies 0.179, 0.250 and 0.408 distinguished protein serine/threonine kinases from proteins which did not have the biological activity. Pertinent patterns in the sequence, responsible for the code/frequency pairs detection were searched and found to be correlated with the putative catalytic domain of the proteins. Protein serine/threonine kinases involved in cell division control, CDC2 protein kinases, were compared to the other protein serine/threonine kinases. Specific code/frequency pairs were extracted from the sequences and could be related to the function or regulation of the kinases in cell division. Two CDC2 related proteins CDC2(Mm) from mice and CDC2(Gg) from chicken were shown to fit well with the CDC2 proteins, whereas KIN28, PHO85 and PSKJ3, which share sequence homology but not functional activity with the CDC2 proteins, were clearly excluded from the CDC2 proteins by the characteristic code/frequency pairs. Pertinent patterns in the CDC2 proteins were analysed and mapped on the CDC2 related protein sequences. Four patterns were correlated with the code/frequency detection and therefore, could be associated to the regulation of the CDC2-related proteins.  相似文献   

8.
S100B is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effect by binding and affecting various target proteins. A consensus sequence for S100B target proteins was published as (K/R)(L/I)xWxxIL and matches a region in the actin capping protein CapZ (V.V. Ivanenkov, G.A. Jamieson, Jr., E. Gruenstein, R.V. Dimlich, Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ, J. Biol. Chem. 270 (1995) 14651-14658). Several additional S100B targets are known including p53, a nuclear Dbf2 related (NDR) kinase, the RAGE receptor, neuromodulin, protein kinase C, and others. Examining the binding sites of such targets and new protein sequence searches provided additional potential target proteins for S100B including Hdm2 and Hdm4, which were both found to bind S100B in a calcium-dependent manner. The interaction between S100B and the Hdm2 and/or the Hdm4 proteins may be important physiologically in light of evidence that like Hdm2, S100B also contributes to lowering protein levels of the tumor suppressor protein, p53. For the S100B-p53 interaction, it was found that phosphorylation of specific serine and/or threonine residues reduces the affinity of the S100B-p53 interaction by as much as an order of magnitude, and is important for protecting p53 from S100B-dependent down-regulation, a scenario that is similar to what is found for the Hdm2-p53 complex.  相似文献   

9.
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C.  相似文献   

10.
Down syndrome (DS) is the most common genetic disorder with mental retardation and a host of deranged proteins has already been described. Protein hunting leads to rapid accumulation of aberrant proteins and proteomics methods not only allow unambiguous identification of proteins, they are also a powerful tools to identify new or predicted proteins. We applied two-dimensional gel electrophoresis with in-gel digestion of proteins and subsequent MALDI-TOF mass-spectrometrical identification and quantification of spots using specific software on cortical brain samples from 7 controls and 7 samples from fetal DS at the early second trimester. Nine hypothetical proteins were identified: three of them (4833418L03Rik protein Q9D614, mitochondrial inner membrane protein Q16891 and Nit protein 2 Q8WUF0) were significantly and about doublefold reduced in fetal DS brain. Hypothetical proteins CGI 99, FLJ10463, 70 kDa WD-repeat tumor rejection antigen homolog, KSRP, Hypothetical protein 49.6 kDa and Elongin A were comparable between groups. Domain analysis of deranged structures revealed a t_SNARE domain for the Rik protein, indicating involvement of this protein in the exocytotic-synaptic machinery impaired in DS, a CN hydrolase domain for Nit protein 2, possibly reflecting aberrant nitrilase-related metabolism and handling and an inner mitochondrial protein, extending knowledge on the mitochondrial deficit in in fetal DS early in life.  相似文献   

11.
Regular physical activity is associated with a reduced risk of coronary heart disease, as it probably modifies the balance between free-radical generation and antioxidant activity. On the other hand, however, acute physical activity increases oxygen uptake and leads to a temporary imbalance between the production of reactive oxygen and nitrogen species (RONS) and their disposal: this phenomenon is called oxidative stress. Proteins are one of the most important oxidation targets during physical exercise and carbonylation is one of the most common oxidative protein modifications. In cells there is a physiological level of oxidized proteins that doesn't interfere with cell function; however, an increase in oxidized protein levels may cause a series of cellular malfunctions that could lead to a disease state. For this reason the quantification of protein oxidation is important to distinguish a healthy state from a disease state. Several studies have demonstrated an increase of carbonylated plasma proteins in athletes after exercise, but none have identified targets of this oxidation. Recently a process of protein decarbonylation has been discovered, this may indicate that carbonylation could be involved in signal transduction. The aim of our research was to characterize plasma protein carbonylation in response to physical exercise in trained male endurance athletes. We analyzed by proteomic approach their plasma proteins at resting condition and after two different kinds of physical exercise (PE). We used 2D-GE followed by western blot with specific antibodies against carbonylated proteins. The 2D analysis identified Haptoglobin as potential protein target of carbonylation after PE. We also identified Serotransferrin and Fibrinogen whose carbonylation is reduced after exercise. These methods have allowed us to obtain an overview of plasma protein oxidation after physical exercise.  相似文献   

12.
Yau SS  Yu C  He R 《DNA and cell biology》2008,27(5):241-250
Graphical representation of gene sequences provides a simple way of viewing, sorting, and comparing various gene structures. Here we first report a two-dimensional graphical representation for protein sequences. With this method, we constructed the moment vectors for protein sequences, and mathematically proved that the correspondence between moment vectors and protein sequences is one-to-one. Therefore, each protein sequence can be represented as a point in a map, which we call protein map, and cluster analysis can be used for comparison between the points. Sixty-six proteins from five protein families were analyzed using this method. Our data showed that for proteins in the same family, their corresponding points in the map are close to each other. We also illustrate the efficiency of this approach by performing an extensive cluster analysis of the protein kinase C family. These results indicate that this protein map could be used to mathematically specify the similarity of two proteins and predict properties of an unknown protein based on its amino acid sequence.  相似文献   

13.
A partial cDNA encoding an Arabidopsis thaliana FH (Formin Homology) protein (AFH1) was used as a probe to clone a full length AFH1 cDNA. The deduced protein encoded by the cDNA contains a FH1 domain rich in proline residues and a C-terminal FH2 domain which is highly conserved amongst FH proteins. In contrast to FH proteins of other organisms, the predicted AFH1 protein also contains a putative signal peptide and a transmembrane domain suggesting its association with membrane. Cell fractionation by differential centrifugation demonstrated the presence of AFH1 in the Triton X-100 insoluble microsomal fraction. An Arabidopsis cDNA library was screened to identify proteins that interact with the C-terminal region of AFH1 using yeast two-hybrid assays, and one of the isolated cDNAs encoded a novel protein, FIP2. Experiments using recombinant proteins expressed in E. coli demonstrated that FIP2 interacted directly with AFH1. The amino acid sequence of FIP2 has partial homology to bacterial putative membrane proteins and animal A-type K+ ATPases. AFH1 may form a membrane anchored complex with FIP2, which might be involved in the organization of the actin cytoskeleton.  相似文献   

14.
A recently described vesicular packing material (VP) representing clusters of microcapsules (derived from plant cells) was tested with respect to its application for protein purification. Protein elution behaviour was investigated with 28 defined proteins and several protein containing preparations and biological fluids. All proteins were eluted with a neutral buffer without retardation as peaks in the permeable or excluded fraction. Due to its sharp separation limits VP can be used for the separation of proteins with small differences in size. In special cases, proteins of nearly equal molecular weight (e.g. carboxypeptidase A and pepsin) may be separated due to differences in the electrical charge of the protein molecules and resulting differences in the electric in the electrical charge of the protein molecules and resulting differnces in the electric interaction with the negatively charged polygalacturonan matrix of the vesicle membrane (cell wall). Vesicle chromatography is a biocompatible process. The VP may be applied on a large scale. Complete separation between excluded and permeable proteins may be reached if the columns are loaded with concentrated protein samples (e.g., blood plasma). Size fractionation by the VP seems to be applicable in the following fields:
  • 1 Preparative separation of an excluded protein from an excess of permeable macromolecules, especially if the difference in STOKES ' diameter is too small for an effective separation by gel chromatography or conventional membrane techniques.
  • 2 Preparative separation of permeable proteins from an excess of excluded proteins.
  • 3 Chromatography of proteins in the presence of alcohol, polyethylene glycol or detergents.
  相似文献   

15.
SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis   总被引:13,自引:0,他引:13  
Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis.  相似文献   

16.
Expanding on the possible protein interaction partners in a biochemical pathway is one key molecular goal in the post-genomic era. Phage peptide display is a versatile in vitro tool for mapping novel protein-protein interfaces and the advantage of this technique in expanding protein interaction maps is that in vitro manipulation of the bait protein conformational integrity can be controlled carefully. Phage peptide display was used to expand on the possible types of binding proteins for the conformationally responsive protein MDM2. Peptides enriched differ depending upon whether MDM2 is ligand-free, zinc-bound, or RNA-bound, suggesting that MDM2 conformational changes alter the type of peptide ligands enriched. Classes of putative/established MDM2-binding proteins identified by this technique included ubiquitin-modifying enzymes (F-box proteins, UB-ligases, UBC-E1) and apoptotic modifiers (HSP90, GAS1, APAF1, p53). Of the many putative MDM2 proteins that could be examined, the impact of HSP90 on MDM2 activity was studied, since HSP90 has been linked with p53 protein unfolding in human cancers. Zinc ions were required to reconstitute a stable MDM2-HSP90 protein complex. Zinc binding converted MDM2 from a monomer to an oligomer, and activated MDM2 binding to its internal RING finger domain, providing evidence for a conformational change in MDM2 protein when it binds zinc. Reconstitution of an HSP90-MDM2 protein complex in vitro stimulated the unfolding of the p53 tetramer. A p53 DNA-binding inhibitor purified from human cells that is capable of unfolding p53 at ambient temperature in vitro contains co-purifying pools of HSP90 and MDM2. These data highlight the utility of phage peptide display as a powerful in vitro method to identify regulatory proteins that bind to a conformationally flexible protein like MDM2.  相似文献   

17.
The leucine-rich repeat as a protein recognition motif   总被引:52,自引:0,他引:52  
Leucine-rich repeats (LRRs) are 20-29-residue sequence motifs present in a number of proteins with diverse functions. The primary function of these motifs appears to be to provide a versatile structural framework for the formation of protein-protein interactions. The past two years have seen an explosion of new structural information on proteins with LRRs. The new structures represent different LRR subfamilies and proteins with diverse functions, including GTPase-activating protein rna1p from the ribonuclease-inhibitor-like subfamily; spliceosomal protein U2A', Rab geranylgeranyltransferase, internalin B, dynein light chain 1 and nuclear export protein TAP from the SDS22-like subfamily; Skp2 from the cysteine-containing subfamily; and YopM from the bacterial subfamily. The new structural information has increased our understanding of the structural determinants of LRR proteins and our ability to model such proteins with unknown structures, and has shed new light on how these proteins participate in protein-protein interactions.  相似文献   

18.
Huang BC  Liu R 《Biochemistry》2007,46(35):10102-10112
mRNA display is a genotype-phenotype conjugation method that allows the amplification-based, iterative rounds of in vitro selection to be applied to peptides and proteins. Compared to prior protein selection techniques, mRNA display can be used to select functional sequences from both long natural protein and short combinatorial peptide libraries with much higher complexities. To investigate the basic features and problems of using mRNA display in studying conditional protein-protein interactions, we compared the target-binding selections against calmodulin (CaM) using both a natural protein library and a combinatorial peptide library. The selections were efficient in both cases and required only two rounds to isolate numerous Ca2+/CaM-binding natural proteins and synthetic peptides with a wide range of affinities. Many known and novel CaM-binding proteins were identified from the natural human protein library. More than 2000 CaM-binding peptides were selected from the combinatorial peptide library. Unlike sequences from prior CaM-binding selections that correlated poorly with naturally occurring proteins, synthetic peptides homologous to the Ca2+/CaM-binding motifs in natural proteins were isolated. Interestingly, a large number of synthetic peptides that lack the conventional CaM-binding secondary structures bound to CaM tightly and specifically, suggesting the presence of other interaction modes between CaM and its downstream binding targets. Our results indicate that mRNA display is an ideal approach to the identification of Ca2+-dependent protein-protein interactions, which are important in the regulation of numerous signaling pathways.  相似文献   

19.
The WD40-repeat proteins serve as a platform coordinating partner proteins and are involved in a range of regulatory cellular functions. A WD40-repeat protein (CsWD1) of Clonorchis sinensis previously cloned is expressed stage-specifically in the tegumental syncytium of C. sinensis metacercariae. In the present study, interacting proteins with the CsWD1 protein was purified by immunoprecipitation and 2 dimension gel electrophoresis from the C. sinensis metacercaria soluble extract, and tryptic peptides were analyzed by LC/ESI-MS. Putative partner proteins were annotated to be actin-2, glyceraldehyde-3-phosphate dehydrogenase, and hypothetical and unmanned proteins. The CsWD1 protein was predicted to contain 3 conserved actin-interacting residues on its functional surface. With these results, the CsWD1 protein is suggested to be an actin-interacting protein of C. sinensis.  相似文献   

20.
Photosynthesis and the biosynthesis of many important metabolites occur in chloroplasts. In these semi-autonomous organelles, the chloroplast genome encodes approximately 100 proteins. The remaining chloroplast proteins, close to 3,000, are encoded by nuclear genes whose products are translated in the cytosol and imported into chloroplasts. However, there is still no consensus on the composition of the protein import machinery including its motor proteins and on how newly imported chloroplast proteins are refolded. In this study, we have examined the function of orf2971, the largest chloroplast gene of Chlamydomonas reinhardtii. The depletion of Orf2971 causes the accumulation of protein precursors, partial proteolysis and aggregation of proteins, increased expression of chaperones and proteases, and autophagy. Orf2971 interacts with the TIC (translocon at the inner chloroplast envelope) complex, catalyzes ATP (adenosine triphosphate) hydrolysis, and associates with chaperones and chaperonins. We propose that Orf2971 is intimately connected to the protein import machinery and plays an important role in chloroplast protein quality control.

Repression of Orf2971 induces accumulation of chloroplast precursor proteins and impaired chloroplast quality indicating that Orf2971 is required for protein import and chloroplast quality control.

IN A NUTSHELL Background: The chloroplast is an important bioreactor as well as a photosynthetic site. Approximately 3,000 plastid proteins encoded in the nucleus are translocated into the chloroplast envelope via the TOC (translocon at the outer chloroplast envelope) and TIC machineries. Most nucleus-encoded preproteins that enter the plastid are unfolded as they traverse the TOC–TIC import complexes. To prevent these unfolded or misfolded proteins from causing chloroplast damage, a quality control mechanism comprising molecular chaperones and proteases ensures that all polypeptides entering chloroplasts are either correctly folded or degraded. However, there is still no consensus on the TIC complex’s components, motor proteins, or mechanism for refolding proteins entering the chloroplast. Question: What is the precise function of each of the proteins in the TIC complex? What is the composition of the chloroplast protein import machinery motor? How are the newly imported chloroplast proteins refolded and assembled into functional complexes? Findings: We found that Orf2971, encoded by the largest gene in the Chlamydomonas reinhardtii chloroplast genome and proposed to be an ortholog of Ycf2, is directly associated with the protein import machinery and plays a crucial role in ensuring the quality of proteins targeted to the chloroplast. Orf2971 deficiency induces protein precursor accumulation, partial proteolysis and protein aggregation, increased expression of chaperones and proteases, and autophagy. We hypothesize that Orf2971 is intimately linked to the protein import machinery and plays a critical role in chloroplast protein quality control. Next steps: The next challenge is to identify the sorting components associated with this complex on the stromal side. Furthermore, additional experimental evidence is required to investigate the relationship between different import machineries, including the analysis of the accumulation of precursor proteins in the various import mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号