首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In human pregnancy, placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase produce progesterone from pregnenolone and metabolize fetal dehydroepiandrosterone sulfate to androstenedione, an estrogen precursor. The enzyme complex was solubilized from human placental microsomes using the anionic detergent, sodium cholate. Purification (500-fold, 3.9% yield) was achieved by ion exchange chromatography (Fractogel-TSK DEAE 650-S) followed by hydroxylapatite chromatography (Bio-Gel HT). The purified enzyme was detected as a single protein band in sodium dodecylsulfate-polyacrylamide gel electrophoresis (monomeric Mr = 19,000). Fractionation by gel filtration chromatography at constant specific enzyme activity supported enzyme homogeneity and determined the molecular mass (Mr = 76,000). The dehydrogenase and isomerase activities copurified. Kinetic constants were determined at pH 7.4, 37 degrees C for the oxidation of pregnenolone (Km = 1.9 microM, Vmax = 32.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.8 microM, Vmax = 32.0 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.7 microM, Vmax = 618.3 nmol/min/mg) and 5-androstene-3,17-dione (Km = 23.7 microM, Vmax = 625.7 nmol/min/mg). Mixed substrate analyses showed that the dehydrogenase and isomerase reactions use the appropriate pregnene and androstene steroids as alternative, competitive substrates. Dixon analyses demonstrated competitive inhibition of the oxidation of pregnenolone and dehydroepiandrosterone by both product steroids, progesterone and androstenedione. The enzyme has a 3-fold higher affinity for androstenedione than for progesterone as an inhibitor of dehydrogenase activity. Based on these competitive patterns of substrate utilization and product inhibition, the pregnene and androstene activities of 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase may be expressed at a single catalytic site on one protein in human placenta.  相似文献   

2.
We have copurified human placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, which synthesize progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate, from microsomes as a homogeneous protein based on electrophoretic and NH2-terminal sequencing data. The affinity alkylator, 2 alpha-bromoacetoxyprogesterone, simultaneously inactivates the pregnene and androstene dehydrogenase activities as well as the C21 and C19 isomerase activities in a time-dependent, irreversible manner following first order kinetics. At four concentrations (50/1-20/1 steroid/enzyme M ratios), the alkylator inactivates the dehydrogenase activity (t1/2 = 1.5-3.7 min) 2-fold faster than the isomerase activity. Pregnenolone and dehydroepiandrosterone protect the dehydrogenase activity, while 5-pregnene-3,20-dione, progesterone, and androstenedione protect isomerase activity from inactivation. The protection studies and competitive kinetics of inhibition demonstrate that the affinity alkylator is active site-directed. Kitz and Wilson analyses show that 2 alpha-bromoacetoxyprogesterone inactivates the dehydrogenase activity by a bimolecular mechanism (k3' = 160.9 l/mol.s), while the alkylator inactivates isomerase by a unimolecular mechanism (Ki = 0.14 mM, k3 = 0.013 s-1). Pregnenolone completely protects the dehydrogenase activity but does not slow the rate of isomerase inactivation by 2 alpha-bromoacetoxyprogesterone at all. NADH completely protects both activities from inactivation by the alkylator, while NAD+ protects neither. From Dixon analysis, NADH competitively inhibits NAD+ reduction by dehydrogenase activity. Mixed cofactor studies show that isomerase binds NAD+ and NADH at a common site. Therefore, NADH must not protect either activity by simply binding at the cofactor site. We postulate that NADH binding as an allosteric activator of isomerase protects both the dehydrogenase and isomerase activities from affinity alkylation by inducing a conformational change in the enzyme protein. The human placental enzyme appears to express the pregnene and androstene dehydrogenase activities at one site and the C21 and C19 isomerase activities at a second site on the same protein.  相似文献   

3.
The purified multifunctional enzyme, 3 beta-hydroxysteroid dehydrogenase with steroid 5-ene-4-ene isomerase from rat testes and adrenals showed similar catalytic properties. They exhibited the same molecular weight of 46,500. Either NAD+ or NADH was required for steroid isomerizing activity, probably as an allosteric effector. It was clearly demonstrated by using the purified enzyme that without NAD(H) no isomerizing activity was detected. In the presence of NADH, or its analogue, 3 beta-hydroxysteroid dehydrogenase obtained from both tissues was inhibited; however, steroid isomerizing activity remained due to the allosteric effect. The results suggest that in these endocrine organs, both enzyme activities reside within the same protein.  相似文献   

4.
Human placental 3 beta-hydroxysteroid dehydrogenase/5----4-ene isomerase (3 beta-HSD) purified from human placenta transforms C-21 (pregnenolone and 17 alpha-hydroxy pregnenolone) as well as C-19 (dehydroepiandrosterone and androst-5-ene-3 beta, 17 beta-diol) steroids into the corresponding 3-keto-4-ene-steroids and is thus involved in the biosynthesis of all classes of hormonal steroids. Trilostane, epostane and cyanoketone are potent inhibitors of 3 beta-HSD with Ki values of approximately 50 nM. 4-MA, a well known 5 alpha-reductase inhibitor, is also a potent inhibitor of 3 beta-HSD with a Ki value of 56 nM. Synthetic progestin compounds such as promegestone and RU2323 show relatively strong inhibitory effects with Ki values of 110 and 190 nM, respectively. Cyproterone acetate, a progestin used in the treatment of hirsutism, acne and prostate cancer as well as norgestrel and norethindrone that are widely used as oral contraceptives also inhibit 3 beta-HSD activity at Ki values of 1.5, 1.7 and 2.5 microM, respectively.  相似文献   

5.
Through the treatment of rat testicular microsomes with sodium cholate, 3 beta-hydroxy-5-ene-steroid dehydrogenase and 5-ene-4-ene isomerase (abbreviated as the 3 beta-hydroxysteroid dehydrogenase and isomerase, respectively) were solubilized, and then purified by DEAE and hydroxylapatite column chromatographies. The findings were as follows: With this purification procedure, the 3 beta-hydroxysteroid dehydrogenase activity could not be separated from the isomerase. For 3-oxo-4-ene-steroid formation from 3 beta-hydroxy-5-ene-steroids, NAD+ was required as a cofactor. While the 3 beta-hydroxysteroid dehydrogenase required NAD+, the isomerase also required NAD+ or its reduced form, in contrast to the microbial enzyme. On treatment of the purified enzyme with 5'-p-fluorosulfonyl-benzoyladenosine (FSBA), both enzyme activities were markedly reduced. The enzyme, affinity labeled with [adenine-8-14C]FSBA, showed a mol. wt of 46.8 K. During 4-androstenedione production from DHA, 5-androstenedione was detected as an intermediate.  相似文献   

6.
After solubilization of rat adrenal microsomes with sodium cholate, 3 beta-hydroxysteroid dehydrogenase with steroid 5-ene-4-ene isomerase (abbreviated as steroid isomerase) activity was purified to a homogeneous state. The following characteristics of the enzyme were obtained: 3 beta-Hydroxysteroid dehydrogenase together with steroid isomerase was detected as a single protein band in SDS-polyacrylamide gel electrophoresis, where its mol. wt was estimated as 46,500. Either NAD+ or NADH was required for demonstration of steroid isomerase activity. Treatment of the enzyme with 5'-p-fluorosulfonylbenzoyladenosine, an affinity labeling reagent for NAD+-dependent enzyme, diminished both the enzyme activities.  相似文献   

7.
Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352±21 and 272±25 μM, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1°C and pH 8.6. Above 37°C, the enzyme activity starts to fall, which may be related to previous reports that the quaternary structure begins a process of disassembly.  相似文献   

8.
Native human renin, produced from the culture of human chorionic trophoblasts, has been purified to homogeneity on a milligram scale using a five-step purification scheme. The chorion cells secrete 50-200 milliGoldblatt Units of trypsin-activatable prorenin per ml into the medium. The pro-enzyme is partially purified by ammonium sulfate fractionation and chromatographies on QAE-Sephadex and cibracon blue-agarose. Following conversion of prorenin to the active enzyme by porcine trypsin, the renin is purified to homogeneity by affinity chromatography and gel filtration. Chorionic prorenin has a molecular weight of 43,000; the active enzyme 40,000. Both proteins exist as a single polypeptide chain as determined by SDS-polyacrylamide gel electrophoresis under reducing conditions. The average specific activity of six different preparations was found to be 1072 Goldblatt Units/mg. The amino acid composition and N-terminal sequence of the active enzyme has been determined and is identical to the human kidney enzyme. Microheterogeneity of chorionic renin was demonstrated by isoelectrofocusing analysis. The physical characterization of chorionic renin is compared with that reported for the human kidney enzyme.  相似文献   

9.
We have used our recently characterized human 3 beta-hydroxy-5-ene steroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) cDNA as probe to isolate cDNAs encoding bovine 3 beta-HSD from a bovine ovary lambda gtll cDNA library. Nucleotide sequence analysis of two overlapping cDNA clones of 1362 bp and 1536 bp in length predicts a protein of 372 amino acids with a calculated molecular mass of 42,093 (excluding the first Met). The deduced amino acid sequence of bovine 3 beta-HSD displays 79% homology with human 3 beta-HSD while the nucleotide sequence of the coding region shares 82% interspecies similarity. Hybridization of cloned cDNAs to bovine ovary poly(A)+ RNA shows the presence of an approximately 1.7 kb mRNA species.  相似文献   

10.
A number of strategies and protocols for the expression, purification and kinetic characterization of human caspases are described in the literature. We have systematically revised these protocols and present comprehensive optimized expression and purification protocols for caspase-1 to -9 as well as improved assay conditions for their reproducible kinetic characterization. Our studies on active site titration revealed that the reproducibility is strongly affected by the presence of DTT in the assay buffer. Furthermore, we observed that not all caspases show a linear relationship between enzymatic activity and protein concentration, which explains the discrepancy between published values of specific activities from different laboratories. Our broad kinetic analysis allows the conclusion that the dependency of caspase activities on protein concentration is an effect of concentration-dependent dimerization, which can also be influenced by kosmotropic salts. The protocol recommendations as an outcome of this work will yield higher reproducibility regarding expression and purification of human caspases and contribute to standardization of enzyme kinetic data.  相似文献   

11.
Rat liver microsomes contain 3 alpha-hydroxysteroid dehydrogenase (HSD) (EC 1.1.1.50) and dihydrodiol dehydrogenase (DHD) (EC 1.3.1.20) activities. The two enzyme activities were solubilized by 10% Triton X-100 or 0.4% sodium deoxycholate. Unlike the cytosolic enzyme (Penning & Talalay (1983) Proc. Natl. Acad. Sci. U.S.A., 80, 4505), the microsomal HSD and DHD activities were not inhibited by indomethacin. Chromatography of the microsomal Triton X-100 extract on Affigel Blue and then on Phenyl-Sepharose gave an HSD preparation containing no detectable (less than 3 - 5%) DHD activity, whereas chromatography of the deoxycholate extract on Phenyl-Sepharose provided a DHD preparation that lacked measurable HSD activity. These results are in sharp contrast to the cytosolic enzyme where both HSD and DHD activities could be copurified to homogeneity (Penning et al. (1984) Biochem. J. 222, 601).  相似文献   

12.
Malate dehydrogenase was purified from the mitochondrial fraction of rat liver by ion-exchange chromatography with affinity elution. The kinetic parameters for the enzyme were determined at pH 7.4 and 37 degrees C, yielding the following values (microM): Ka, 72; Kia, 11; Kb, 110; Kp, 1600; Kip, 7100; Kq, 170; Kiq, 1100, where a = NADH, b = oxalacetate, p = malate, and q = NAD+. Kib was estimated to be about 100 microM. The maximum velocities for mitochondrial malate dehydrogenase in rat liver homogenates, at pH 7.4 and 37 degrees C, were 380 +/- 40 mumol/min per gram of liver, wet weight, for oxalacetate reduction and 39 +/- 3 mumol/min per gram of liver, wet weight, for malate oxidation. Rates of the reaction catalyzed by mitochondrial malate dehydrogenase under conditions similar to those in vivo were calculated using these kinetic parameters and were much lower than the maximum velocity of the enzyme. Since mitochondrial malate dehydrogenase is not saturated with malate at physiological concentrations, its kinetic parameters are probably important in the regulation of mitochondrial malate concentration during ethanol metabolism. For the mitochondrial enzyme to operate at a rate comparable to the flux through cytosolic malate dehydrogenase during ethanol metabolism (about 4 mumol min-1 per gram liver), the mitochondrial [malate] would need to be about 2 mM and the mitochondrial [oxalacetate] would need to be less than 1 microM.  相似文献   

13.
The inducible 3-keto-5 alpha-steroid-delta 4-dehydrogenase of Nocardia corallina was purified to homogeneity using affinity chromatography on 19-nortestosterone-17-acetoxyaminoethyl Sepharose 4B. SDS-polyacrylamide gel electrophoresis, gel filtration and spectral analysis of flavin suggest that the purified dehydrogenase is a monomeric protein of Mr 60,000 containing one flavin. It has a typical absorption spectrum of flavoprotein with maxima at 457, 375, and 277 nm. The values shifted to 470 and 395 nm on binding of 19-nortestosterone. The enzyme catalyzed the dehydrogenation of 3-keto-5 alpha-steroid at the 4- and 5-position, e.g. the conversion of 5 alpha-androst-1-ene-3,17-dione to 1,4-androstadiene-3,17-dione with the reduction of phenazine methosulfate. The substrate 3-ketosteroid has essentially the 5 alpha-configuration. The enzyme did not reduce potassium ferricyanide but did reduce cytochrome c at a moderate rate, and exhibited only a weak steroid oxidase activity. Stereochemical study demonstrated that the enzyme abstracts the 4 beta, 5 alpha-hydrogens of the substrate as a hydrogen ion through a protein-based reaction and as a hydride ion by transfer to FAD, respectively. The enzyme oxidizes a wide variety of 3-keto-5 alpha-steroids but not 3 beta-hydroxysteroid. The dehydrogenase also catalyzed steroid transhydrogenation between 3-keto-5 alpha-steroid and 3-keto-1,4-diene-steroid. The properties of this enzyme are compared with those of 3-keto-steroid-delta 1-dehydrogenase.  相似文献   

14.
Human, microsomal, and glutathione-dependent prostaglandin (PG) E synthase-1 (mPGES-1) was expressed with a histidine tag in Escherichia coli. mPGES-1 was purified to apparent homogeneity from Triton X-100-solubilized bacterial extracts by a combination of hydroxyapatite and immobilized metal affinity chromatography. The purified enzyme displayed rapid glutathione-dependent conversion of PGH2 to PGE2 (Vmax; 170 micromol min-1 mg-1) and high kcat/Km (310 mm-1 s-1). Purified mPGES-1 also catalyzed glutathione-dependent conversion of PGG2 to 15-hydroperoxy-PGE2 (Vmax; 250 micromol min-1 mg-1). The formation of 15-hydroperoxy-PGE2 represents an alternative pathway for the synthesis of PGE2, which requires further investigation. Purified mPGES-1 also catalyzed glutathione-dependent peroxidase activity toward cumene hydroperoxide (0.17 micromol min-1 mg-1), 5-hydroperoxyeicosatetraenoic acid (0.043 micromol min-1 mg-1), and 15-hydroperoxy-PGE2 (0.04 micromol min-1 mg-1). In addition, purified mPGES-1 catalyzed slow but significant conjugation of 1-chloro-2,4-dinitrobenzene to glutathione (0.8 micromol min-1 mg-1). These activities likely represent the evolutionary relationship to microsomal glutathione transferases. Two-dimensional crystals of purified mPGES-1 were prepared, and the projection map determined by electron crystallography demonstrated that microsomal PGES-1 constitutes a trimer in the crystal, i.e. an organization similar to the microsomal glutathione transferase 1. Hydrodynamic studies of the mPGES-1-Triton X-100 complex demonstrated a sedimentation coefficient of 4.1 S, a partial specific volume of 0.891 cm3/g, and a Stokes radius of 5.09 nm corresponding to a calculated molecular weight of 215,000. This molecular weight, including bound Triton X-100 (2.8 g/g protein), is fully consistent with a trimeric organization of mPGES-1.  相似文献   

15.
F Ferre  M Breuiller  L Cedard 《Steroids》1975,26(5):551-570
Delta5-3beta HSDH activity has been assayed either by spectrophotometric method or by use of radioactive substrates. The enzymatic activity is equally distributed between mitochondrial and microsomal fractions verified by electronic microscopy. The specific activity is comparable in both fractions, as well as the optimal pH and the Km for NAD and for the substrates. The delta5-3beta Hut optimal pH, specific activity and sensitivity to the inhibitory action of various steroids are different when C19 and C21 steroids are used as substrates. Estrogens and cyclic AMP have also an inhibitory action on the oxidation of C21 steroids. Treatment of microsomal or mitochondrial membranes with phospholipase A releases fatty acids (mainly arachidonic) and decreases the enzymatic activity. "Adsorbtion" of the fatty acids on bovine serum albumin partially reactivates the delta5-3beta HSDH.  相似文献   

16.
The mitochondrial enzymes citrate synthase, malate dehydrogenase, and aspartate aminotransferase were purified to homogeneity from porcine hearts by use of Bio-Rex 70, carboxymethylcellulose CM32, and Affi-Gel blue chromatography. This procedure provides relatively rapid, large-scale preparation of the three enzymes based on their differential binding to commercially available cation-exchange resins followed by a final affinity chromatography step.  相似文献   

17.
The aims of the present study are (i) to purify a mitochondrial glyoxalase II to homogeneity for the first time from any organism and (ii) to compare its kinetic properties with those of the cytoplasmic enzyme. Both the cytoplasmic and the mitochondrial glyoxalases II from Saccharomyces cerevisiae, which are the products of two distinct genes, GLO2 and GLO4, were purified from yeast and in recombinant form from Escherichia coli. To obtain a higher protein yield (compared to wild-type expression) in yeast, the genes were placed under the control of the strong GAL1 promoter on a multicopy plasmid. Amino-terminal sequencing and molecular mass determination by MALDI-TOF mass spectrometry of the mitochondrial Glo4 protein revealed Met-11 of the primary translation product of the gene as the N-terminal amino acid. Judged by enzyme kinetic properties the recombinant and natural proteins were equivalent. The cytoplasmic and the mitochondrial enzyme differed in the pH dependence of the kinetic parameters for the main substrate, S-d-lactoylglutathione. Whereas the cytoplasmic protein showed a pronounced peak of enzyme activity between pH 7-8 and a continuous up to fivefold increase of the K(M) value with increasing pH (from 5. 5-9.0), the mitochondrial protein had a nearly constant K(M) value and an activity maximum over a broad pH range (6.5-9.0). The kinetic parameters (at pH 7.5) of both the cytoplasmic and the mitochondrial enzyme for S-D-lactoylglutathione were of the same order of magnitude as reported recently for the human and Arabidopsis thaliana enzymes which are presumably of cytoplasmic origin. However, both yeast enzymes showed a severalfold lower preference for the more hydrophobic substrate, S-d-mandeloylglutathione.  相似文献   

18.
An isoflavone 5-O-methyltransferase was partially purified from the roots of yellow lupin (Lupinus luteus) by fractional precipitation with ammonium sulfate, followed by gel filtration and ion-exchange chromatography using a fast-protein liquid chromatography system. This enzyme, which was purified 810-fold, catalyzed position-specific methylation of the 5-hydroxyl group of a number of substituted isoflavones. The methyltransferase had a pH optimum of 7 in phosphate buffer, an apparent pI of 5.2, a molecular weight of 55,000, no requirement for Mg2+, and was inhibited by various SH-group reagents. Substrate interaction kinetics of the isoflavonoid substrate and S-adenosyl-L-methionine gave converging lines which were consistent with a sequential bireactant binding mechanism. Furthermore, product inhibition studies showed competitive inhibition between S-adenosyl-L-methionine and S-adenosyl-L-homocysteine and noncompetitive inhibition between the isoflavone and either S-adenosyl-L-homocysteine or the 5-O-methylisoflavone. The kinetic patterns obtained were consistent with an ordered bi bi mechanism, where S-adenosyl-L-methionine is the first substrate to bind to the enzyme and S-adenosyl-L-homocysteine is the final product released. The physiological role of this enzyme is discussed in relation to the biosynthesis of 5-O-methylisoflavones of this tissue.  相似文献   

19.
Glyceraldehyde 3-P dehydrogenase was purified approximately 250-fold from pig liver and crystallized. The purification procedure consisted of treating liver homogenates with zinc chloride, followed by ammonium sulfate fractionation and ion exchange chromatography. The enzyme was monodisperse in the ultracentrifuge with a sedimentation coefficient of s20,w = 7.85 S. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed a single subunit band with an approximate molecular weight of 38,000. High-speed sedimentation equilibrium gave a molecular weight of 1.5 × 105. Incubation of the enzyme with ATP at 0 °C caused a loss of its dehydrogenase activity; some of the lost activity was regained upon warming to room temperature. Sucrose density gradient studies of the ATP-treated enzyme revealed a decrease in its sedimentation coefficient from 7.8 to 3.85 S. In the forward reaction direction, the Km for glyceraldehyde 3-P was 240 μm and the Km for NAD was 12 μm. In the backward reaction direction, the Km for NADH was 23 μm and the Ki for NAD was 850 μm. Pig liver glyceraldehyde-3-P dehydrogenase resembles the rabbit muscle enzyme in that it apparently contains 2 to 3 mol of tightly bound NAD. However, it differs strongly from that enzyme in its rate and extent of inactivation by ATP at 0 °C and by urea; the pig liver enzyme, like the yeast enzyme, dissociates much more slowly and much less completely than the rabbit muscle enzyme under comparable conditions.  相似文献   

20.
Rat intestinal UDPgalactose: N-acetylglucosaminyl(beta 1----4)galactosyltransferase activity was studied as to its intestinal and villus-to-crypt distribution, and then purified and characterized. Rapid UDPgalactose hydrolysis was noted in the duodenum and jejunum; little to no breakdown was detected in the distal ileum, cecum and proximal colon. Product analysis suggested that UDPgalactose hydrolysis was due to nucleotide-sugar pyrophosphatase and galactose-1-phosphate phosphatase activities; ileum appeared to have little of the first activity and none of the latter. An aboral gradient of galactosyltransferase activity was noted, activity being 3-4-fold higher in the ileum, cecum and proximal colon. Total homogenate exogenous acceptor galactosyltransferase activities showed no villus-crypt differences but activity measured with intact isolated cells demonstrated higher activity with crypt cells; this was particularly evident in the ileum. Galactosyltransferase activity was purified from ileal-colonic mucosa. An over 4000-fold purification with 75 percent yield was achieved. Only one band of approx. 70-75 kDa was noted on sodium dodecyl sulfate polyacrylamide electrophoresis. As with other eukaryotic galactosyltransferase activities, there was an absolute requirement for Mn2+; the concentration required for half maximal activity was only 2.5 microM and higher concentrations did not inhibit. The Km for UDPgalactose was 30 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号