首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IL-1 and IL-4 are important mediators of B cell growth and differentiation. The cell-surface receptors for these cytokines have recently been cloned and recombinant soluble receptors have been produced that bind their respective ligand. The ability of soluble forms of the murine IL-1R (sIL-1R) and IL-4R (sIL-4R) to inhibit B cell functions in vitro was examined. Proliferation of B cells treated with anti-Ig plus IL-1 or IL-4 was inhibited by the appropriate soluble receptor. sIL-4R also inhibited IL-4-dependent B cell differentiation as measured by: induction of IgG1 and IgE secretion by LPS blasts, down-regulation of IgG3 secretion by LPS blasts, increased Ia expression, and increased Fc epsilon R (CD23) expression. The inhibitory effects of the soluble receptors were found to be highly specific in that sIL-4R had no effect on IL-1-induced B cell activity and sIL-1R had no effect on IL-4 activity, further demonstrating the existence of two independent pathways of B cell activation directed by IL-1 and IL-4.  相似文献   

2.
IL-1 inhibits B cell differentiation in long term bone marrow cultures   总被引:2,自引:0,他引:2  
There is evidence that stromal cells are responsive to changes in their external milieu and that this can affect their function. IL-1 has been identified as one mediator that can affect stromal cells by increasing their secretion of CSF. The monokine has also been reported to be a B cell differentiation factor. The purpose of this study was to test the effects of IL-1 on the pattern of hemopoietic cell differentiation by adding IL-1 alpha to myeloid long term bone marrow cultures (MBMC) at the time of their transfer to lymphoid bone marrow culture conditions. This usually results in the cessation of myelopoiesis and the induction of B lymphopoiesis. The addition of 50 U/ml of rIL-1 alpha, but not 10 U/ml, to MBMC at the time of their transfer to lymphoid conditions resulted in a complete inhibition of B cell differentiation and sustained myelopoiesis. To determine whether adherent layer cells contributed to this effect, conditioned medium (CM) was collected from adherent layers treated previously with the antibiotic mycophenolic acid. This depletes the hemopoietic cells from the cultures and retains a purified population of stromal cells. CM from mycophenolic acid- treated adherent layers exposed for 24 h to 50 U/ml of IL-1 was added at volume concentrations of 5, 10, and 25% to MBMC at the time of transfer to lymphoid bone marrow culture conditions and at each feeding thereafter. Expression of the B lineage associated 14.8 Ag and IgM was inhibited on a dose dependent basis, and myelopoiesis was sustained in cultures to which 25% CM had been added. Induction of B lymphopoiesis occurred in cultures to which adherent cell CM not exposed to IL-1 had been added. The CM from the IL-1-treated adherent cells contained CSF, because it promoted the growth of myeloid colonies from fresh marrow or MBMC cells and stimulated the granulocyte-macrophage-CSF sensitive FDC-P1 cell line to proliferate. IL-3 was not present in the CM, because stimulation of the IL-3 sensitive 32D cell line was not observed. The CM from the IL-1-treated adherent cells stimulated thymocytes to proliferate in the presence of PHA. This raised the possibility that the induced CSF may have required IL-1 to mediate their effects in the cultures. However, B lymphopoiesis was inhibited and myelopoiesis maintained upon addition of recombinant granulocyte-, macrophage-, and granulocyte-macrophage-CSF to cultures, indicating that IL-1 or other non-CSF molecules induced by it need not be present.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Despite being of the myeloid lineage, acute myeloid leukaemia (AML) blasts are of low immunogenicity, probably because they lack the costimulatory molecule CD80 and secrete immunosuppressive factors. We have previously shown that in vitro stimulation of autologous peripheral blood mononuclear cells (PBMCs) with primary AML cells modified to express CD80 and IL-2 promotes proliferation, secretion of Th1 cytokines and expansion of activated CD8+ T cells. In this study, we show that allogeneic effector cells (from a healthy donor or AML patients) when stimulated with IL-2/CD80 modified AML blasts were able to induce the lysis of unmodified AML blasts. Effector cells stimulated with IL-2/CD80AML blasts had higher lytic activity than cells stimulated with AML cells expressing CD80 or IL-2 alone. Similarly, AML patient PBMCs primed with autologous IL-2/CD80 AML cells had a higher frequency of IFN-γ secreting cells and show cytotoxicity against autologous, unmodified blasts. Crucially, the response appears to be leukaemia specific, since stimulated patient PBMCs show higher frequencies of IFN-γ secreting effector cells in response to AML blasts than to remission bone marrow cells from the same patients. Although studied in a small number of heterogeneous patient samples, the data are encouraging and support the continuing development of vaccination for poor prognosis AML patients with autologous cells genetically modified to express IL-2/CD80.  相似文献   

4.
Mouse B lymphocytes were stimulated at high cell concentrations with goat anti-IgM antibodies, which leads to the induction of B cell proliferation without the addition of any growth factors. After 48 hr, blast cells were purified and cultured at low cell concentrations. Proliferation and differentiation of purified B lymphocyte blasts is then dependent on the addition of either mitogens (e.g., LPS) or certain lymphokines derived from activated T cells or macrophages. One such lymphokine was isolated from supernatants of various activated T cells and characterized by gel filtration as a material with an apparent m.w. of 40,000 to 50,000, similar to BCGF II. It supports the proliferation of the B cell blasts and induces their differentiation into plaque-forming cells. Lymphokines such as BCGF I, interleukin 2, and BCDF gamma could neither maintain growth nor induce differentiation of B lymphocytes preactivated by goat anti-IgM.  相似文献   

5.
Inhibitory influence of IL-4 on human B cell responsiveness   总被引:15,自引:0,他引:15  
The role of IL-4 in human B cell activation, proliferation, and differentiation was examined. rIL-2, but not rIL-4, was able to promote maximum proliferation and generation of Ig-secreting cells in cultures of highly purified B cells stimulated with Cowan I Staphylococcus aureus (SA). Addition of rIL-4 to rIL-2-supported cultures of SA-stimulated peripheral blood, spleen, or lymph node B cells dramatically suppressed both proliferation and differentiation. Results from experiments in which rIL-4 was added to culture at progressively later times indicated a requirement for rIL-4 to be present during the first 2 days of a 5-day incubation to cause inhibition of responsiveness. When a two-stage culture system was utilized, rIL-4 was found to support proliferation or differentiation of B cells initially activated with SA for 2 days only minimally. However, rIL-4 did not inhibit responses of SA preactivated B cells supported by IL-2. The presence of rIL-4 during the initial 48-h activation of B cells with SA and rIL-2 resulted in a profound inhibition of the ability of the activated B cells to respond subsequently to rIL-2 or lymphokine-rich T cell supernatants. A similar 48-h incubation with rIL-4 alone without SA had no effect on subsequent B cell responsiveness. The presence of rIFN-gamma during B cell activation decreased the inhibitory effect of IL-4. Other cytokines including IFN-alpha, IL-1, and commercially available low m.w. B cell growth factor also diminished the inhibitory effect of IL-4. These results indicate that IL-4 inhibits the capacity of human B cells to be activated maximally by SA and rIL-2 and therefore suggest a new immunomodulatory role for this cytokine.  相似文献   

6.
The effects of the cytokine IL-4 on resting and activated human B cells were compared with the effects of known "competence" signals able to drive resting B cells into the cell cycle, including anti-Ig, PMA, anti-CD20, and a recently described competence signal, anti-Bgp95. In proliferation assays, IL-4 was costimulatory with anti-Ig and anti-Bgp95 but not with anti-CD20 or PMA. IL-4 alone triggered increases in expression of class II DR/DQ and CD40, but it did not trigger increases in intracellular free calcium [Ca2+]i in resting B cells or induce resting B cells to leave G0 and enter the G1 phase of the cell cycle. Although IL-4 has some characteristics of competence signals, it was most effective if added to B cells up to 12 h after anti-Ig or anti-Bgp95 rather than before, and thus, in this respect, works more like a progression signal. Like IL-4, all four competence signals for B cells triggered increases in class II and CD40, but only IL-4 consistently induced increases in CD23 surface levels. IL-4 was costimulatory only with anti-Ig and anti-Bgp95, each of which can trigger increases in [Ca2+]i and new protein synthesis of the proto-oncogene c-myc, and can increase attachment of protein kinase C to the plasma membrane. IL-4 was not costimulatory with signals that 1) did not affect [Ca2+]i yet induced c-myc protein synthesis (anti-CD20), 2) only stimulated the translocation of protein kinase C (PMA), or 3) only stimulated increases in [Ca2+]i (calcium ionophore). These results suggest that resting human B cells require at least two intracytoplasmic signals before IL-4 can effectively promote B cell proliferation.  相似文献   

7.
During T cell-B cell collaboration, plasma cell (PC) differentiation and Ig production are known to require T cell-derived soluble factors. However, the exact nature of the cytokines produced by activated T cells that costimulate PC differentiation is not clear. Previously, we reported that costimulation of purified human B cells with IL-21 and anti-CD40 resulted in efficient PC differentiation. In this study, we addressed whether de novo production of IL-21 was involved in direct T cell-induced B cell activation, proliferation, and PC differentiation. We found that activated human peripheral blood CD4(+) T cells expressed mRNA for a number of cytokines, including IL-21, which was confirmed at the protein level. Using a panel of reagents that specifically neutralize cytokine activity, we addressed which cytokines are essential for B cell activation and PC differentiation induced by anti-CD3-activated T cells. Strikingly, neutralization of IL-21 with an IL-21R fusion protein (IL-21R-Fc) significantly inhibited T cell-induced B cell activation, proliferation, PC differentiation, and Ig production. Inhibition of PC differentiation was observed even when the addition of IL-21R-Fc was delayed until after initial B cell activation and expansion had occurred. Importantly, IL-21 was found to be involved in PC differentiation from both naive and memory B cells. Finally, IL-21R-Fc did not inhibit anti-CD3-induced CD4(+) T cell activation, but rather directly blocked T cell-induced B cell activation and PC differentiation. These data are the first to document that B cell activation, expansion, and PC differentiation induced by direct interaction of B cells with activated T cells requires IL-21.  相似文献   

8.
IL-4 suppression of in vivo T cell activation and antibody production   总被引:3,自引:0,他引:3  
Injection of mice with a foreign anti-IgD Ab stimulates B and T cell activation that results in large cytokine and Ab responses. Because most anti-IgD-activated B cells die before they can be stimulated by activated T cells, and because IL-4 prolongs the survival of B cells cultured with anti-Ig, we hypothesized that treatment with IL-4 at the time of anti-IgD Ab injection would decrease B cell death and enhance anti-IgD-induced Ab responses. Instead, IL-4 treatment before or along with anti-IgD Ab suppressed IgE and IgG1 responses, whereas IL-4 injected after anti-IgD enhanced IgE responses. The suppressive effect of early IL-4 treatment on the Ab response to anti-IgD was associated with a rapid, short-lived increase in IFN-gamma gene expression but decreased CD4+ T cell activation and decreased or delayed T cell production of other cytokines. We examined the possibilities that IL-4 stimulation of IFN-gamma production, suppression of IL-1 or IL-2 production, or induction of TNF-alpha or Fas-mediated apoptosis could account for IL-4's suppressive effect. The suppressive effect of IL-4 was not reversed by IL-1, IL-2, or anti-TNF-alpha or anti-IFN-gamma mAb treatment, or mimicked by treatment with anti-IL-2Ralpha (CD25) and anti-IL-2Rbeta (CD122) mAbs. Early IL-4 treatment failed to inhibit anti-IgD-induced Ab production in Fas-defective lpr mice; however, the poor responsiveness of lpr mice to anti-IgD made this result difficult to interpret. These observations indicate that exposure to IL-4, while T cells are first being activated by Ag presentation, can inhibit T cells activation or promote deletion of responding CD4+ T cells.  相似文献   

9.
A biphasic dose response curve was observed when the bone marrow-derived cell line FDCP1, used as an indicator line for IL-3 bioassays, was exposed to supernatants from some activated T cell clones but not others. The active component which inhibited proliferation at the higher supernatant concentrations appeared to be IFN-gamma, based on the following observations. 1) Only those culture supernatants which contained IFN-gamma gave a biphasic dose response curve; 2) with these supernatants, an anti-IFN-gamma mAb augmented the proliferation of FDCP1 cells at the higher supernatant concentrations; and 3) rIFN-gamma profoundly inhibited the proliferation of FDCP1 cells stimulated with rIL-3 or rIL-4. rTNF-alpha inhibited FDCP1 proliferation only to a modest extent, yet the combination of rTNF-alpha + rIFN-gamma provided greater inhibition than each agent alone. The proliferation of a second bone marrow-derived cell line, DA1, was not inhibited by rIFN-gamma or rIFN-gamma + rTNF-alpha when stimulated with rIL-3 or recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF). Fresh bone marrow cells also showed a suboptimal proliferative response when stimulated with T cell supernatants containing IFN-gamma, and this response was augmented considerably upon the addition of anti-IFN-gamma mAb. Bone marrow cell proliferation was observed upon exposure to rIL-3, rIL-4, or rGM-CSF, and these responses were inhibited by rIFN-gamma; rTNF-alpha also produced a synergistic effect with these cells. Bone marrow cell colony formation stimulated by rIL-3 or rGM-CSF also was inhibited by rIFN-gamma. Colony formation in bone marrow cell cultures was not observed in response to rIL-4. Collectively, these results suggest that Th1 cells, which in addition to IL-3 and GM-CSF also produce IFN-gamma, may regulate hemopoietic cell proliferation and colony formation differently from the way Th2 cells do, which do not produce IFN-gamma.  相似文献   

10.
The effect of rIL-6 on the growth and differentiation of highly purified human peripheral blood B cells was examined. IL-6 alone induced minimal incorporation of [3H]thymidine by unstimulated or Staphylococcus aureus (SA)-stimulated B cells and did not augment proliferation induced by SA and IL-2. Similarly, IL-6 alone did not support the generation of Ig-secreting cells (ISC) or induce the secretion of Ig by unstimulated or SA-stimulated B cells. However, IL-6 did augment the generation of ISC and the secretion of all isotypes of Ig induced by SA and IL-2. Maximal enhancement of B cell responsiveness by IL-6 required its presence from the initiation of culture. Delaying the addition of IL-6 to B cells stimulated with SA and IL-2 beyond 24 h diminished its effect on ISC generation. However, increased Ig production but not ISC generation was observed when IL-6 was added to B cells that had been preactivated for 48 h with SA and IL-2. This effect was most marked when the activated B cells were also stimulated with IL-2. IL-6 in combination with other cytokines such as IL-1 and IL-4 did not induce the secretion of Ig or generation of ISC in the absence of IL-2. Moreover, antibody to IL-6 did not inhibit the effect of IL-2 on the growth and differentiation of B cells stimulated with SA, but did inhibit the IL-6-induced augmentation of Ig secretion by B cells stimulated with SA and IL-2. IL-6 alone enhanced T cell dependent induction of B cell differentiation stimulated by PWM. Part of this enhancement was related to its capacity to increase the production of IL-2 in these cultures. These results indicate that IL-6 has several direct enhancing effects on the differentiation of B cells, all of which are at least in part dependent on the presence of IL-2. In addition, IL-6 can indirectly increase B cell differentiation by increasing IL-2 production by T cells.  相似文献   

11.
Conditioned medium (CM) (cell secretome) is a cocktail of growth factors, cytokines, and other soluble mediators secreted by cells into a culture medium. These growth factors are fundamental in many cellular processes such as cell growth, differentiation, and others and the composition of these factors is individual for each cell type. Osteoclasts are large multinucleated cells that are responsible for bone resorption. Immune and cancer cells are known to produce different growth factors, which are able to induce or inhibit osteoclast differentiation. Herein, we evaluated the effect of CM obtained from the supernatant of activated and non‐activated Jukart‐E6 cells, as well as from one murine (B16‐F10) and one human melanoma cell line (SK­MEL­28). To induce osteoclast differentiation, murine bone marrow mononuclear cells were cultured in the presence and absence of differentiation factors (DF), such as macrophage colony‐stimulating factor, prostaglandin E2, receptor activator of nuclear factor‐κB ligand, and CM. We measured the concentration of interleukin 6, tumor necrosis factor‐α and interferon γ (IFN‐γ) in CM that can inhibit or induce osteoclastogenesis. Our study demonstrated that CM obtained from each cell line suppresses or inhibits osteoclasts formation at early and intermediate stages of differentiation in the absence or presence of DF. CM obtained from activated Jurkat‐E6 cells demonstrates a stronger effect when compared with CM from naïve Jurkat‐E6 cells or human and murine melanoma cells. Moreover, CM obtained from activated Jurkat‐E6 cells shows higher secretion of IFN‐γ, which is an inhibitor of osteoclastogenesis, in comparison with CM obtained from the three other cell lines. On the other hand, CM derived from B16‐F10 cells showed a smaller inhibitory effect when compared with CM derived from the other cells.  相似文献   

12.
The ability of stromal cells in bone marrow to support B lymphopoiesis may be partially mediated by secretion of biologically active factors. The first cytokine with lymphopoietic activity to be molecularly cloned from stromal cells, IL-7, was originally identified by its growth-promoting activity on long term cultured lymphocytes. We now report that murine rIL-7 is a potent proliferative stimulus for B cell progenitors isolated from fresh bone marrow. Proliferation was initially most obvious among large precursor cells which bear the B lineage associated Ag, Ly5/220 and BP1. A majority of these also contained cytoplasmic Ig mu H chains. Extended culture with IL-7 resulted in a predominance of immature c mu- lymphocytes. No effect by IL-7 was observed on the proliferation of mature lymphocytes. It also did not induce maturation in a number of early B lineage cell lines, or promote the formation of LPS-responsive, clonable B cells from precursors. When incorporated into semisolid agar medium, IL-7 specifically and rapidly induced the formation of pre-B cell colonies in a linear fashion with respect to numbers of cells cultured from either purified B cell progenitor preparations or unfractionated bone marrow. In both liquid and agar culture conditions, the IL-7 proliferative activity was inhibitable by two related forms of transforming growth factor (TGF) beta, TGF-beta 1 and TGF-beta 2. Taken together, these results indicate that IL-7 is a stimulus for replication of normal B lineage cells at an early stage of differentiation, and its activity can be modulated by other cytokines. IL-7 also provides a means of studying the progeny of a single B cell progenitor, and of enumerating clonable pre-B cells in the absence of colony formation by other cell types in bone marrow.  相似文献   

13.
Both type-2 CD4(+) Th cells (CD4(+)Th2) and type-2 innate effector cells play critical roles in generating type-2 immunity that can either be protective against parasitic infection or cause tissue damage in allergy and asthma. How innate effector cells acquire the capacity to produce Th2 cytokines is not entirely known. We previously showed that IL-4 induced differentiation of Th2 cytokine-producing eosinophils. To determine whether other Th2 cytokines can also induce Th2 cytokine-producing capacity in innate effector cells, we cultured bone marrow progenitor cells in the presence of various Th2 cytokines. IL-5, but not IL-13 or IL-25, primed bone marrow progenitor cells to differentiate into robust IL-4-producing cells. The majority of IL-4-producing cells induced by IL-5 were eosinophils. Importantly, IL-5 completely depended on STAT5 to promote IL-4-producing capacity in eosinophils. Thus, our study demonstrates that IL-5 functions as a potent factor that drives bone marrow progenitor cells into IL-4-producing eosinophils.  相似文献   

14.
A novel role for accessory cells in T cell-dependent B cell differentiation   总被引:1,自引:0,他引:1  
The monocyte requirement for pokeweed mitogen-induced T cell-dependent B cell activation was reexamined. We report a dichotomy in the requirement for accessory cells in B cell proliferation and differentiation. Adherent cell-depleted human peripheral blood mononuclear cells which contained only 5% monocytes generated sufficient T cell help for optimal B cell proliferation. However, the presence of 10 to 20% monocytes were required during the last 5 days of culture for stimulated B cells to become IgG-secreting cells. Similar numbers of monocytes were also needed for anti-CD3-induced B cell differentiation. Moreover, monocytes alone added to previously activated B cells could support B cell differentiation in the absence of T cells. To determine the role of cytokines in this system, we demonstrated that supernatants of adherent cell-depleted PBMC contained decreased IL-6 activity in comparison with unseparated PBMC, but not IL-1, IL-2, or BCGF. Recombinant IL-6, however, added back either alone or with other cytokines could not replace the effects of intact monocytes on B cell differentiation. Physical interaction between the accessory cells and the responder cells was also required. As a minimum, paraformaldehyde-fixed monocytes, IL-6, and IL-1 were needed to reconstitute maximal IgG secretion. These studies suggest that accessory cells capable of producing IL-1 and IL-6 can have direct effects on the terminal differentiation of stimulated B cells.  相似文献   

15.
The capacity of human B cells to differentiate into high rate nondividing antibody-secreting plasma cells was investigated. Highly purified human peripheral blood B cells were stimulated with polyclonal B cell activators in the presence of a variety of recombinant cytokines (IL-2, IL-4, IL-6). Maximal production of Ig of all isotypes was observed when B cells were stimulated with intact T cells that were activated with mAb to the CD3 molecular complex. In these cultures, Ig production continued for more than 16 days. Moreover, differentiation to nondividing high rate Ig-producing cells was induced, as evidenced by a ninefold increase in the amount of Ig produced per Ig-secreting cell and the acquisition of resistance of ongoing Ig secretion to the inhibitor of DNA synthesis, hydroxyurea. To determine whether intact T cells were required for the entire culture period to achieve maximal Ig production, B cells were cultured with activated T cells for various lengths of time, reisolated and cultured with fresh activated T cells or various cytokines, then analyzed for Ig secretion. B cells preactivated for 6 days with anti-CD3-stimulated T cells required contact with intact T cells for continued Ig secretion. However, after 9 days of preactivation, dividing B cells responded maximally to anti-CD3-stimulated T cells, whereas cytokines were able to drive continued IgG secretion by nondividing B cells in the absence of intact T cells. IL-6 alone, or in combination with either IL-2 or IL-4, was the major cytokine driving ongoing Ig secreting by nondividing preactivated B cells. These results suggest that continued clonal expansion of Ig-secreting B cell blasts requires intact anti-CD3-activated T cells, whereas terminal differentiation of B cells into plasma cells after extensive clonal expansion is driven by cytokines, most notably IL-6.  相似文献   

16.
Natural suppressor (NS) cells, which nonspecifically suppress immune responses, are present in the spleen following exposure to radiation, chronic graft-versus-host disease, or cancer and in normal bone marrow. A model system is described which allows the study of cytokines activating and inhibiting NS cells, cytokines mediating NS activity, and NS effects on cytokine synthesis. Recombinant interleukin-3 (rIL-3) and granulocyte-macrophage colony-stimulating factor (rGM-CSF) efficiently activated NS cells present in normal bone marrow and were effective at concentrations as low as 5 U/ml. At high concentrations, GM-CSF, but not IL-3, did not activate NS cells. Recombinant interferon-gamma (rIFN-gamma) blocked the activation of bone marrow NS cells by rIL-3, but did not down-regulate NS cells once activated. The NS cells secreted one or more soluble suppressor factors, which blocked IL-2 synthesis and also inhibited IL-2-dependent T cell proliferation in the presence of excess IL-2.  相似文献   

17.
Human B cells can be activated with monoclonal antibodies (mAb) to surface IgM receptors or mAb to a 35-kilodalton B cell differentiation antigen, Bp35 (CD20). We compared anti-Ig-induced B cell activation with B cell triggering by anti-Bp35. Both anti-Ig- and anti-Bp35-dependent proliferation were augmented by the same co-stimulants, including a partially purified BCGF, recombinant IL 1, TPA, or each other. When anti-Bp35 and anti-Ig were used together to induce proliferation of tonsillar B cells, the strongest response was observed when anti-Bp35 was added 12 to 24 hr before anti-Ig. Anti-Bp35 also was found to act most effectively when added before the BCGF. Blood and tonsillar B cells differed in their proliferative response to anti-Ig or anti-Bp35: unlike dense tonsillar B cells, which consistently proliferated in response to either stimulus, blood B cells from many donors proliferated in response to anti-Ig but not to anti-Bp35 even in the presence of other co-stimuli. Dense tonsillar B cells that proliferate in response to anti-Bp35 appeared to be at a more activated stage than unresponsive blood B cells because they expressed higher levels of HLA class II molecules than blood B cells. Pretreatment of blood B cells with anti-Bp35 converted them to an HLA-DR(bri) phenotype and made them more responsive to anti-Ig-induced proliferation. These results suggest that B cells at different stages of differentiation differ in their response to anti-Bp35 and anti-Ig. The Bp35 surface polypeptide may play an early role in the activation of B cells prior to antigen or other signals.  相似文献   

18.
In this study, we demonstrate that an Epstein-Barr virus-transformed B cell line, A-11, produced interleukin-1 (IL-1), a cytokine that regulates bone remodeling. A-11 cells produce IL-1 in a cell dose- and culture time-related manner. The IL-1 activity was neutralized by recombinant human IL-1 (rhIL-1) alpha antiserum, but not by rhIL-1 beta antiserum. The IL-1 was semi-purified by (NH4)2SO4 precipitation, Superose prep 12 gel filtration, and anion-exchange chromatography strongly stimulated in vitro bone resorption. The stimulatory effect of the purified IL-1 on bone resorption was prostaglandin independent. Purified IL-1 inhibited DNA and collagen synthesis in the osteoblastic cell line MC3T3-E1. However, it enhanced significantly the cellular activity of alkaline phosphatase (EC 3.1.3.1), a marker enzyme for differentiation of osteoblasts. On the other hand, A-11 cell proliferation was inhibited by addition of rhIL-1 alpha antiserum, but not by rhIL-1 beta antiserum. And cell proliferation was stimulated by exogenous rhIL-1 alpha and -beta.  相似文献   

19.
Innate effector cells that produce Th2-type cytokines are critical in Th2 cell-mediated immune responses. However, it is not known how these cells acquire the ability to produce Th2 cytokines. IL-4 is a potent inducer that directs differentiation of naive CD4(+) T cells into CD4(+) Th2 effector cells. To determine whether IL-4 can induce differentiation and expansion of Th2 cytokine-producing innate cells, we used mice whose il-4 gene was replaced by a knock-in green fluorescence protein (gfp) gene. We found that, directly ex vivo, IL-4 increased the number of GFP(+) cells in the airway and the lung tissue in an Ag-specific manner. The majority of GFP(+) cells were eosinophils, suggesting that IL-4 plays a pivotal role in expanding IL-4-producing eosinophils in vivo. IL-4-producing eosinophils showed some unique features compared with IL-4-producing CD4(+) T cells. They exhibited biallelic expression of the il-4 gene when stimulated and were more dominant IL-4- and IL-5-producing cells. Furthermore, we show that IL-4 drove bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils in vitro. These results strongly suggest IL-4 is a potent factor in directing bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils.  相似文献   

20.
IL-4 is an important B cell survival and growth factor. IL-4 induced the tyrosine phosphorylation of IRS2 in resting B lymphocytes and in LPS- or CD40L-activated blasts. Phosphorylated IRS2 coprecipitated with the p85 subunit of PI 3' kinase in both resting and activated cells. By contrast, association of phosphorylated IRS2 with GRB2 was not detected in resting B cells after IL-4 treatment although both proteins were expressed. However, IL-4 induced association of IRS2 with GRB2 in B cell blasts. The pattern of IL-4-induced recruitment of p85 and GRB2 to IRS2 observed in B cells derived from STAT6 null mice was identical to that observed for normal mice. While IL-4 alone does not induce activation of MEK, a MEK1 inhibitor suppressed the IL-4-induced proliferative response of LPS-activated B cell blasts. These results demonstrate that costimulation of splenic B cells alters IL-4-induced signal transduction independent of STAT6 leading to proliferation. Furthermore, proliferation induced by IL-4 in LPS-activated blasts is dependent upon the MAP kinase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号