首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activated glucocorticoid receptor (GR) from rat liver cytosol was purified by sequential chromatography on DNA-cellulose and DEAE-Sepharose. Analysis by sodium dodecyl sulfate-gel electrophoresis demonstrated a main band with Mr = 94,000 (94K band). Two minor bands with Mr = 79,000 (79K band) and 72,000 (72K band) were also seen in this preparation. Photoaffinity labeling showed that the hormone is bound to the 94K and 79K components but not to the 72K component. Immunoblotting using antibodies raised against the 94K protein demonstrated cross-reactivity between the 94K and 79K components but not with the 72K species. The 72K species could be partially separated from the 94K and 79K components by density gradient centrifugation. Limited proteolysis of the purified GR with trypsin or alpha-chymotrypsin led to degradation of the 94K and 79K components and appearance of a 39K fragment which still retained the hormone and could be bound to DNA-cellulose. The 72K component was not affected by digestion with trypsin or alpha-chymotrypsin. However, chromatography on DNA-cellulose of the alpha-chymotrypsin-treated GR resulted in elution of the 72K component in the flow-through of the column while the 39K fragment was retained on the column and eluted with 0.18 M NaCl. In the control experiment where no alpha-chymotrypsin treatment was performed, the 72K component could not be detected in the flow-through fraction but was eluted together with the 94K and 79K components at 0.18 M NaCl. These results suggest that the 72K protein might be bound to the 94K and/or 79K component. The 39K fragment did not bind antibodies raised against the 94K protein. The 39K fragment was further degraded by trypsin but not by alpha-chymotrypsin to a 27K and a 25K fragment while both still retained the ligand. These data obtained with limited proteolysis of the purified GR are in agreement with previous findings on proteolysis of the GR in crude cytosol (Wrange, O., and Gustafsson, J.-A. (1978) J. Biol. Chem. 253, 856-865; Carlstedt-Duke, J., Okret, S., Wrange, O., and Gustafsson, J.-A. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4260-4264).  相似文献   

2.
Glucocorticoid-receptor complex (GR) has been purified from rat liver by differential affinity for DNA before and after activation, followed by ion-exchange chromatography. The purified GR has mol. wt 94,000 dalton. The protein contains three functional domains: (A) a steroid-binding domain; (B) a DNA-binding domain; and (C) a domain necessary for normal biological function. A second protein, with mol. wt 72,000 dalton, copurifies with the GR. This protein does not bind steroid, does not interact with antibodies raised against the GR and does not show the same susceptibility to limited proteolytic cleavage as the 94,000 dalton protein. Analysis of the specific interaction of the purified GR with the mouse mammary tumour virus gene, assayed by glycerol-gradient centrifugation, shows that one molecule of 94,000 dalton protein binds to each of the specific binding sites in the long terminal repeat region. Analysis of the fractions from the glycerol gradients show that the 72,000 dalton protein is associated to the binding species (94,000 dalton receptor protein) in about equimolar amounts. Analysis of the molybdate-stabilized non-activated receptor complex using monoclonal antibodies raised against the 94,000 dalton receptor protein indicates that the molybdate-stabilized complex is a hetero-oligomer. The hetero-oligomer consists of only one molecule of the 94,000 dalton receptor protein, in association with other non-steroid-binding proteins.  相似文献   

3.
We have investigated the physiochemical characteristics of trypsin-treated, molybdate-stabilized glucocorticoid-receptor complexes from rat liver in the presence of 10 mM sodium molybdate by high performance ion-exchange chromatography, high performance size-exclusion chromatography, and sedimentation analysis. Trypsin treatment was performed under conditions previously reported to degrade the monomeric Mr approximately 94,000 steroid-binding protein to an Mr approximately 27,000 ligand-binding entity (Wrange, O., and Gustafsson, J.-A. (1978) J. Biol. Chem. 253, 856-865). Also in the presence of molybdate, an Mr approximately 27,000 steroid-binding fragment was obtained by limited trypsinization. However, no major differences in the tested physicochemical parameters were seen when trypsin-treated glucocorticoid-receptor complexes were compared with crude cytosolic complexes. Furthermore, the Mr approximately 27,000 steroid-binding fragment generated in the presence of molybdate could be immunoprecipitated by antibodies specific for the glucocorticoid receptor-associated Mr approximately 90,000 heat shock protein. These results provide direct evidence for an interaction of the Mr approximately 90,000 heat shock protein with the steroid-binding domain of the glucocorticoid receptor, known to correspond to the C-terminal third of the receptor protein.  相似文献   

4.
The purified activated glucocorticoid receptor is a homodimer   总被引:12,自引:0,他引:12  
The structure of purified preparations of activated (DNA-binding) glucocorticoid receptor (GR) was analyzed in the presence or absence of DNA. A 35-base pair DNA fragment harboring a strong GR-binding site from the mouse mammary tumor virus promoter (-189/-166) was used for stoichiometric analysis of the GR.DNA complex. Glycerol gradient centrifugation was utilized in order to separate the 6 S GR.DNA complex from the 4 S GR and the 3 S DNA fragment. Synthetic glucocorticoid [3H]triamcinolone acetonide bound to GR and 32P-5'-end-labeled DNA fragment were used as probes for quantitation of each component. Such experiments demonstrated that two hormone molecules (two 87.5-kDa GR peptides) are associated with each cognate DNA site. Quantitative DNase I footprinting confirmed this result. The formation of the GR.DNA complex was ligand-dependent, but once formed the complex remained stable after ligand dissociation. Incubation of GR with 0.01-0.1% (w/v) glutaraldehyde resulted in a shift in its sedimentation rate from 4 to 6 S. Gel filtration chromatography of glutaraldehyde-treated GR resulted in a complex of slightly larger size than the gamma-globulin standard (158 kDa). Gel filtration of GR without glutaraldehyde treatment gave the identical result. This suggests that a GR multimer, probably a homodimer, is stable during gel filtration chromatography but needs to be stabilized by glutaraldehyde cross-linking or DNA during glycerol gradient centrifugation. We conclude that the activated GR exists as a homodimer when unbound as well as when bound to DNA.  相似文献   

5.
Interferon-treated mouse and human cells show enhanced levels of a protein kinase activity which is manifested by the phosphorylation of endogenous Mr = 67,000 and 72,000 proteins, respectively. Such kinase activity can be assayed after its partial purification on poly(I) X poly(C)-Sepharose. Under these experimental conditions, the apparent km of the kinase for ATP is 1.0 X 10(-6) M and 2.5 X 10(-6) M in enzyme fractions from mouse L-929 and human HeLa cells, respectively. The Mr = 67,000 and 72,000 proteins are phosphorylated by their serine and threonine residues, the ratio of which is modified in preparations from interferon-treated cells. Both of these phosphoproteins are composed of several subspecies with similar isoelectric points (pIs) in the range of 7.2 to 8.2. This heterogeneity is due to the number of phosphate groups per molecule of protein. Accordingly, the pIs of highly phosphorylated proteins are at a less basic pH (7.2 to 7.5). Furthermore, highly phosphorylated proteins show an increase in their apparent molecular weights compared to partially phosphorylated ones. This corresponds to an increase of Mr = 1,500. Partial proteolysis of the 32P-labeled Mr = 67,000 and 72,000 proteins by Staphylococcus aureus V8 protease, alpha-chymotrypsin and thrombin, indicated that these phosphoproteins differ in their polypeptide structure. Phosphorylation of the Mr = 67,000 and 72,000 proteins in enzyme fractions from control L-929 and HeLa cells is enhanced by mixing with extracts from interferon-treated heterologous cells. Proteins, Mr = 67,000 and 72,000, therefore, may serve as suitable substrates for an exogenous kinase, thus indicating that the substrate in enzyme fractions from control cells is less phosphorylated because of a low level of kinase activity.  相似文献   

6.
3-Hydroxy-3-methylglutaryl(HMG)-coenzyme A reductase purified from rat liver in the absence of protease inhibitors is composed of two distinct polypeptides of Mr = 51,000 and 52,500. Antibody raised to enzyme purified from rats fed a diet supplemented with cholestyramine and mevinolin inactivated HMG-CoA reductase. The antibody specifically precipitated a polypeptide of Mr = 94,000 from rat liver cells that had been previously incubated with [35S]methionine. The immunoprecipitation of the 35S-labeled polypeptide of Mr = 94,000 was prevented by addition of unlabeled pure HMG-CoA reductase (Mr = 51,000 and 52,500). Incubation of rat liver cells with mevalonolactone resulted in a decreased activity of HMG-CoA reductase and in a 40% decrease in the rate of incorporation of [35S]methionine into the immunoprecipitable reductase polypeptide of Mr = 94,000. In pulse-chase experiments, mevalonolactone enhanced the rate of degradation of the Mr = 94,000 polypeptide 3-fold. We propose that endogenous microsomal HMG-CoA reductase has a subunit of Mr = 94,000 and that the synthesis and degradation of this polypeptide are regulated by either mevalonolactone or, more likely, a product of mevalonolactone metabolism.  相似文献   

7.
In a previous study, it was shown that the peroxisomal fraction of rat liver, isolated by Percoll gradient centrifugation of a light mitochondrial fraction, was able to catalyze conversion of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) into cholic acid (Pedersen, J. I., and J. Gustafsson, 1980. FEBS Lett. 121: 345-348). In the present work, this peroxisomal THCA-oxidizing system has been studied in more detail. The peroxisomes were prepared by sucrose gradient centrifugation. By use of different marker enzymes, it was confirmed that the major part of the activity in the light mitochondrial fraction was located in the peroxisomes. The reaction was absolutely dependent on the presence of Mg2+, CoA, ATP, and NAD+ in the reaction medium. In addition to cholic acid, small amounts of 3 alpha, 7 alpha, 12 alpha, 24-tetrahydroxy-5 beta-cholestanoic acid were detected as product. Provided the peroxisomes were preincubated with ATP and CoA, the reaction was linear with time up to 75 min. It was linear with peroxisomal protein and the pH optimum was 8. The reaction was stimulated by FAD (ca. 50%), by cytosolic protein (about twofold), by microsomal protein (about twofold), bovine serum albumin (about sevenfold), and by KCN (75% at 1 mM). In the absence of bovine serum albumin in the medium the K'm for the overall reaction was 1.4 X 10(-6) M and the maximum rate was 4.3 nmol X mg-1 X hr-1. In the presence of bovine serum albumin, the K'm increased to 6.3 X 10(-6) M and the maximum rate to about 32 nmol X mg-1 X hr-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Eukaryotic initiation factor 5 (eIF-5) has been purified from the ribosomal salt-wash proteins of rabbit reticulocyte lysates. The purified factor migrates as a single polypeptide upon sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of about 58,000-62,000. In contrast, less pure preparations of reticulocyte eIF-5 behave in gel filtration columns and in glycerol gradient centrifugation in buffers containing 75-100 mM KCl as a protein of apparent Mr = 140,000-160,000. Presumably, this is due to association of the factor with other proteins, since eIF-5 activity present in such preparations can also be shown by (a) glycerol gradient centrifugation in buffers containing 500 mM KCl or (b) gel electrophoresis under denaturing conditions, to be associated with a 58,000-62,000-dalton protein. Furthermore, eIF-5 purified from rabbit reticulocyte lysates in the absence or presence of protease inhibitors is indistinguishable with regard to molecular weight and final specific activity. It can be calculated that 1 pmol of the purified eIF-5 catalyzes the formation of nearly 50 pmol of 80 S initiation complex under in vitro initiation reaction conditions. Because of the highly catalytic activity of eIF-5 in initiation reactions, the presence of even low levels of eIF-5 in eIF-2 preparations causes hydrolysis of GTP bound to the 40 S initiation complex. This results in destabilization of Met-tRNA(f) bound to the 40 S complex in sucrose gradient centrifugation.  相似文献   

9.
Immunoaffinity-purified DNA polymerase alpha-primase complex from calf thymus consists of subunits with molecular weights of 148,000-180,000, 73,000, 59,000, and 48,000 (Nasheuer, H.-P., and Grosse, F. (1987) Biochemistry 26, 8458-8466). Primase activity was separated from the immobilized complex by washing extensively with 2 M KCl or, alternatively, by shifting to pH 11.5 in the presence of 1 M KCl. From both elution procedures, the primase activity was found to be associated with the polypeptides with molecular weights of 59,000 and 48,000. The specific activity, using either elution procedure, was 30,000 units/mg. Both polypeptides sedimented together at 5.7 S upon zonal centrifugation on a sucrose gradient. Primase activity was found in the flow-through fraction after DEAE-cellulose chromatography of the free primase. Analysis of this fraction by sodium dodecyl sulfate gel electrophoresis revealed only one band with a Mr of 48,000. Polyclonal antibodies were raised against the Mr 59,000 and 48,000 polypeptides. The anti-Mr 59,000 antibody affected the primase activity only marginally, whereas the anti-Mr 48,000 antibody inhibited the primase activity nearly completely. UV cross-linking of the DNA polymerase alpha-primase complex with alpha-32P-labeled GTP revealed a binding site at the Mr 48,000 polypeptide, but none at the other subunits of the complex. Taken together, these results suggest that the Mr 48,000 polypeptide bears the active site of the DNA primase activity. The Mr 59,000 polypeptide stabilizes the primase activity.  相似文献   

10.
Activated glucocorticoid receptor (GR) from the human cell line HeLa S3 was purified by differential chromatography on DNA-cellulose followed by DEAE-Sepharose chromatography to 50-60% homogeneity according to sodium dodecyl sulfate gel electrophoresis and densitometric scanning of silver-stained gels. These gels routinely demonstrated a main band of Mr 94,000 (94K band) and two minor bands of Mr 79,000 (79K band) and 39,000 (39K band), respectively. Photoaffinity labeling indicated that the hormone was bound to the 94K and 79K components. In some preparations, a 72K band was observed. Further characterization of the purified receptor by gel permeation chromatography on Sephadex G-200 revealed a receptor complex with a Stokes radius of 5.8 nm. The sedimentation coefficient of the purified receptor was 4.4 Sw. In analogy to the rat hepatic GR, limited proteolysis of the purified GR with trypsin or alpha-chymotrypsin led to degradation of the 94K and 79K components and appearance of 28K and 39K fragments, respectively. In addition, no difference in the protease digestion pattern using Staphylococcus aureus V8 protease was observed. Immunoblotting using a monoclonal antibody raised against the 94K GR from rat liver demonstrated cross-reactivity with the human 94K and 79K proteins from HeLa S3 cells, indicating similar antigenic characteristics between rat and human GR. In our study, five out of nine tested monoclonal antibodies against the rat liver GR cross-reacted with human GR. DNase I and exonuclease III protection experiments demonstrated binding of the purified human GR to specific GR binding regions in mouse mammary tumor virus DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In partially purified preparations of the vacuolar ATPase from Neurospora crassa, the two most prominent components are polypeptides of Mr = 70,000 and 60,000. We previously reported the isolation of the gene vma-1, which encodes the Mr = 70,000 polypeptide, and presented evidence that the polypeptide contains the site of ATP hydrolysis (Bowman, E. J., Tenney, K., and Bowman, B. J. (1988) J. Biol. Chem. 263, 13994-14001). We now report the isolation of a gene (designated vma-2), that encodes the Mr = 60,000 polypeptide. Analysis of the DNA sequence shows that the polypeptide has 513 amino acids and a molecular mass of 56,808 daltons (and will thus be referred to as the 57-kDa polypeptide). It is fairly rich in polar amino acids and has no apparent membrane-spanning domains. The vma-2 gene contains five short introns (55-71 bases), all clustered in the 5' end of the coding region. The gene maps to the right arm of linkage group II, near 5 S RNA gene 3. Thus, it is unlinked to vma-1 and to other known ATPase genes in N. crassa. The 57-kDa polypeptide shows 25% amino acid sequence identity with the vma-1 gene product. It shows essentially the same degree of similarity (25-28%) to both the alpha and beta subunits of F0F1 ATPases. Analysis of specific regions of the 57-kDa polypeptide, however, suggests it may have a function like that of the alpha subunit in F0F1 ATPases. The data indicate that all four types of ATPase polypeptides have evolved from a common ancestor and that the vacuolar-type ATPases have a structure surprisingly similar to that of the F0F1 ATPases.  相似文献   

12.
Glucocorticoid hormone receptors are present in the soluble fraction of target cell homogenates as large entities (Mr approximately 300,000) that are unable to interact with DNA. These large complexes contain an Mr approximately 94,000 steroid- and DNA-binding polypeptide, in association with an Mr approximately 90,000 non-ligand-binding entity, which has been identified as a heat shock protein, hsp90. This protein has been purified to near homogeneity as a component of the non-activated receptor complex. Characterization of the purified protein revealed its presence as a dimer in the large receptor form. Dissociation of the receptor-hsp90 complex can be induced by heat treatment only when ligand is bound to the receptor, as demonstrated by specific DNA-binding assay and sucrose gradient ultracentrifugation, hsp90 represents ca 1% of total proteins in rat liver cytosol, and milligram amounts were purified using a combination of high performance ion exchange and gel permeation chromatography. Monospecific antibodies were raised in rabbits. They were found to precipitate the intact non-activated glucocorticoid receptor, as well as the Mr approximately 27,000 steroid-binding fragment of the receptor generated by trypsin treatment, indicating that hsp90 interacts with the steroid-binding domain of the glucocorticoid receptor. Finally, translation of glucocorticoid receptor mRNA in reticulocyte lysate yields a protein which also interacts with hsp90 and binds to DNA only after ligand-binding and heat treatment. Thus, the glucocorticoid receptor is synthesized in a non-activated form also in vitro.  相似文献   

13.
(1) Intestinal absorption is altered under a variety of circumstances in health and disease and to determine a possible relationship between intestinal absorptive function and intestinal brush border membrane composition, we undertook the isolation and purification of rabbit jejunal and ileal brush borders, to allow further studies of their lipid composition under varied experimental conditions. (2) A modification of an established method (Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J. and Crane, R.K. (1973) Biochim. Biophys. Acta 323, 98-112) utilized CaCl2 aggregation and sequential centrifugation followed by purification of the brush border pellet (P2) at 27,000 X g on a PercollTM (Pharmacia) self-forming gradient. The PercollTM was removed by ultracentrifugation for 30 min at 100 000 X g, utilizing a batch rotor in the Beckman airfugeTM. (3) Pure brush border membrane vesicles were obtained and characterized by specific marker analysis and electron microscopy. Comparative marker analyses performed on P2 and final PercollTM preparations from animals showed that the purification achieved was 8-11-fold greater when compared to the original homogenates. Verification of purity was also demonstrated by the absence of DNA and very low levels of Beta-gluconridase and (Na+ + K+)-ATPase in the PercollTM preparations. (4) Comparative lipid analyses of P2 and final PercollTM preparations showed that levels of total phospholipid and free fatty acids were several-fold higher in the PercollTM preparations on a per mg protein basis. (5) A comparison of the activity of enzyme markers and the levels of total free fatty acids in P2 pellets obtained after Cacl2 and MgCl2 aggregation showed that CaCl2 aggregation gave the more consistently reproducible results. (6) Although standard procedures of membrane preparations not involving density gradient separation provide membranes of reasonable purity for the estimation of lipid components, we consider the final purification step of density gradient separation using PercollTM is essential for determining small quantitative changes which might occur in the membrane lipid composition under experimental conditions were intestinal absorptive function is altered.  相似文献   

14.
Transformed and bacterially expressed glucocorticoid receptors free from Mr 90,000 heat shock protein (hsp90) have a 100-fold lower steroid-binding affinity than the hsp90-bound nontransformed receptor, suggesting that hsp90 is needed for high-affinity steroid binding [Nemoto, T., Ohara-Nemoto, Y., Denis, M., & Gustafsson, J.-A. (1990) Biochemistry 29, 1880-1886]. To investigate whether or not this phenomenon is common to all steroid receptors, we investigated the steroid-binding affinities of bacterially expressed and transformed androgen receptors. The C-terminal portion of the rat androgen receptor containing the putative steroid-binding domain was expressed as a fusion protein of protein A in Escherichia coli. The recombinant protein bound a synthetic androgen, [3H]R1881, with high affinity (Kd = 0.8 +/- 0.3 nM). Glycerol gradient analysis revealed that the recombinant protein sedimented at around the 3S region irrespective of the presence of molybdate, indicating that the receptor is present in monomeric form. The steroid-free transformed androgen receptor was obtained by exposure of rat submandibular gland cytosol to 0.4 M NaCl in the absence of steroid. High-performance ion-exchange liquid chromatography analysis showed that the transformed androgen receptor bound to [3H]R1881 with high affinity. Thus these observations indicate that, in contrast to the glucocorticoid receptor, hsp90 is not required for the high-affinity steroid binding of the androgen receptor. In addition, the hsp90-free androgen receptor prebound with radioinert R1881 was efficiently relabeled with [3H]R1881, while the triamcinolone acetonide-bound, transformed glucocorticoid receptor failed in ligand exchange. The inability to achieve ligand exchange probably reflects the low steroid-binding affinity of this entity.  相似文献   

15.
16.
This laboratory has carried out the first detailed studies of the active polymeric forms of phosphofructokinases over the concentration region of 1 to 1200 micrograms/ml. This includes the concentration range in which the enzymes exist in vivo and the concentration range in which their association-dissociation equilibria shift to yield various polymeric forms. Previously, active enzyme centrifugation experiments were limited to the concentration range below a few micrograms per ml. The present experiments were made possible by the recent development in this laboratory of a new technique called high concentration active enzyme centrifugation (Wei, G. J., and Deal, W. C., Jr. (1979) Biochemistry 18, 1129). We report here three new active polymeric forms of pig kidney phosphofructokinase which have been observed in high concentration active enzyme centrifugation experiments. These include: 1) a 9.8 S form (Mr = 2.6 X 10(5)); 2) a 25 S form (Mr = 1.01 X 10(6)); and 3) a 53 S form (too asymmetric to estimate Mr). In addition, a 5.4 S form is predicted from the Mr (8.8 X 10(4)) of the polypeptide chain obtained from sodium dodecyl sulfate gel electrophoresis; it is not known whether or not it is active. The 9.8 S value is the limiting sedimentation coefficient value observed in active enzyme centrifugation experiments. The 25 S form is indicated by a plateau in the 50 to 200 micrograms/ml region of the s versus c curve. The 53 S form is observed as a plateau in the 600 to 1000 micrograms/ml region of the s versus c curve.  相似文献   

17.
The signal recognition particle (SRP)-mediated elongation arrest of the synthesis of nascent secretory proteins can be released by salt- extracted rough microsomal membranes (Walter, P., and G. Blobel, 1981, J. Cell Biol, 91:557-561). Both the arrest-releasing activity and the signal peptidase activity were solubilized from rough microsomal membranes using the nonionic detergent Nikkol in conjunction with 250 mM KOAc. Chromatography of this extract on SRP-Sepharose separated the arrest-releasing activity from the signal peptidase activity. Further purification of the arrest-releasing activity using sucrose gradient centrifugation allowed the identification of a 72,000-dalton polypeptide as the protein responsible for the activity. Based upon its affinity for SRP, we refer to the 72,000-dalton protein as the SRP receptor. A 60,000-dalton protein fragment (Meyer, D. I., and B. Dobberstein, 1980, J. Cell Biol., 87:503-508) that had been shown previously to reconstitute the translocation activity of protease- digested membranes, was shown here by peptide mapping and immunological criteria to be derived from the SRP receptor. Findings that are in part similar, and in part different from these reported here and in our preceding paper were made independently (Meyer, D. I., E. Krause, and B. Dobberstein, 1982, Nature (Lond.). 297:647-650) and the term "docking protein" was proposed for the SRP receptor. A lower membrane content of both SRP and the SRP receptor than that of membrane bound ribosomes suggests that the SRP-SRP receptor interaction may exist transiently during the formation of a ribosome-membrane junction and during translocation.  相似文献   

18.
J P Sine  B Colas 《Biochimie》1987,69(1):75-80
A soluble form of acetylcholinesterase was shown to be present in rabbit enterocytes. The enzyme was obtained from a high-speed supernatant (105,000 X g centrifugation) after homogenization of intestinal mucosa without detergent. It was shown to possess no obvious hydrophobic character and could be classified as a low-salt-soluble (LSS) acetylcholinesterase. Sucrose gradient centrifugation revealed a single enzyme species with a sedimentation coefficient of 3.9 +/- 0.2S. By gel filtration performed in HPLC the enzyme was eluted as a protein corresponding to an Mr of 72,000 +/- 3,000. It could be precipitated with concanavalin A by affinoelectrophoresis, but the catalytic activity was not affected by the lectin. Our results are consistent with a G1 globular form for this soluble acetylcholinesterase which differs very clearly from detergent-soluble forms also found recently in the plasma membranes of rabbit enterocytes.  相似文献   

19.
The murine Leydig tumor cell line 1 (MLTC-1) contains gonadotropin receptors (GR) that are coupled to adenylate cyclase through the stimulatory guanine nucleotide binding protein (Gs). The binding of human choriogonadotropin (hCG) causes MLTC-1 cells to accumulate cAMP. With time, the ability of MLTC-1 cells to respond to hCG is attenuated by a process called desensitization. The hydrodynamic properties of GR from control and desensitized MLTC-1 cells were studied. Sucrose density gradient sedimentation in H2O and D2O and gel filtration chromatography were used to estimate the Stokes radius (a), partial specific volume (vc), sedimentation coefficient (S20,w), and molecular weight (Mr) of the detergent-solubilized hormone-receptor complex (hCG-GR). [125I]hCG was bound to MLTC-1 cells under conditions that allow (37 degrees C) or prevent (0 degree C) desensitization, and hCG-GR was solubilized in Triton X-100. In the absence of desensitization, control hCG-GR had a Mr of 213,000 (a = 6.2; vc = 0.76; S20,w = 7.3), whereas desensitized hCG-GR had a Mr of 158,000 (a = 6.1; Vc = 0.71; S20,w = 6.6). Deglycosylated hCG (DG-hCG) is an antagonist that binds to GR with high affinity but fails to stimulate adenylate cyclase or cause desensitization. [125I]DG-hCG was bound to MLTC-1 cells and DG-hCG-GR solubilized in Triton X-100. The hydrodynamic properties of DG-hCG-GR (Mr 213,000; a = 5.8; Vc = 0.77; S20;w = 7.6) were the same as that for control hCG-GR. There was no evidence for the association of adenylate cyclase or Gs with GR in Triton X-100 solubilized preparations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have previously shown that protein-protein interactions mediate cooperative binding of the glucocorticoid receptor DNA-binding domain to a glucocorticoid response element (Dahlman-Wright, K., Siltala-Roos, H., Carlstedt-Duke, J., and Gustafsson, J.-A. (1990) J. Biol. Chem. 265, 14030-14035). The cooperativity of DNA binding is lost when the distance between the two half-sites constituting a glucocorticoid responsive element is altered or when their relative orientation is changed. We show here that mutations in the responsive element which interfere with cooperative DNA binding by the glucocorticoid receptor DNA-binding domain in vitro also abolish transactivation by the full length glucocorticoid receptor in vivo. We also identify a short segment in the proximity of one of the bound zinc ions that is required for cooperative binding of the glucocorticoid receptor DNA-binding domain to a glucocorticoid response element. We suggest that this segment is involved in dimer formation of the native glucocorticoid receptor and that it is important for correct positioning of the dimeric molecule on the double helix of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号