首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
断裂内含肽含有两个独立分离的多肽片段(N端内含肽和C端内含肽),它催化蛋白质反式剪接反应,在蛋白质研究与蛋白质工程中已得到诸多实际应用.在蛋白质反式剪接过程中,内含肽的N端内含肽和C端内含肽通过结构互补特异性地非共价组合.然而,Ssp DnaX S1型断裂内含肽的较大C端内含肽片段近来被发现能够与源自其它内含肽的N端内含肽片段交叉反应,表明蛋白质内含子Ssp DnaX具有结构杂交特征.本研究对另外2种S1型内含肽Rma DnaB和Ssp GyrB的较大C端内含肽与不同S1型断裂内含肽的N 端内含肽交叉反应活性进行分析检测.目的是探讨S1型断裂内含肽的结构杂交特征是否具有普遍性.结果发现,Rma DnaB的S1 C端内含肽能够与Ssp GyrB的S1 N端内含肽交叉反应,却不能与Ssp DnaX的S1 N端内含肽交叉反应;与此相似,Ssp GyrB的S1 C端内含肽能够与Rma DnaB的 S1 N端内含肽交叉反应,却不能与Ssp DnaX的S1 N端内含肽交叉反应.此外,某些交叉反应表现出温度依赖性.这些结果对于内含肽的结构 功能关系以及S1型断裂内含肽的应用研究具有重要的意义.  相似文献   

2.
断裂蛋白质内含子的剪接机制、起源和进化   总被引:1,自引:0,他引:1  
蛋白质内含子(intein)是具有自我催化活性的蛋白质. 翻译后,通过蛋白质剪接从蛋白质前体中去掉,并以肽键连接两侧蛋白质外显子(extein)形成成熟蛋白质. 断裂蛋白质内含子(split intein)在蛋白质内含子中部区域特定位点发生断裂,形成N端片段和C端片段,分别由基因组上相距较远的两个基因编码. 现在已知,它仅分布于蓝细菌和古细菌中. 断裂蛋白质内含子的N端片段和C端片段通过非共价键(如静电作用)相互识别,重建催化活性中心,介导蛋白质反式剪接. 断裂蛋白质内含子的发现进一步深化了人们对基因表达和蛋白质翻译后成熟过程复杂性的认识,而且它在蛋白质工程、蛋白质药物开发和蛋白质结构与功能研究等方面有非常广泛的应用. 本文试图综述断裂蛋白质内含子的分布、结构特征和剪接机制,并分析其可能的起源和进化途径.  相似文献   

3.
The discovery of inteins, which are protein-splicing elements, has stimulated interest for various applications in chemical biology, bioseparations, drug delivery, and sensor development. However, for inteins to effectively contribute to these applications, an increased mechanistic understanding of cleavage and splicing reactions is required. While the multistep chemical reaction that leads to splicing is often explored and utilized, it is not clear how the intein navigates through the reaction space. The sequence of reaction steps must progress in concert in order to yield efficient splicing while minimizing off-pathway cleavage reactions. In this study, we demonstrate that formation of a previously identified branched intermediate is the critical step for determining splicing over cleavage products. By combining experimental assays and quantum mechanical simulations, we identify the electrostatic interactions that are important to the dynamics of the reaction steps. We illustrate, via an animated simulation trajectory, a proton transfer from the first C-terminal extein residue to a conserved aspartate, which synchronizes the multistep enzymatic reaction that is key to splicing. This work provides new insights into the complex interplay between critical active-site residues in the protein splicing mechanism, thereby facilitating biotechnological application while shedding light on multistep enzyme activity.  相似文献   

4.
Protein splicing mediated by inteins is a self-processive reaction leading to the excision of the internal intein domain from a precursor protein and the concomitant ligation of the flanking sequences, the extein-N and extein-C parts, thereby reconstituting the host protein. Most inteins employ a splicing pathway in which the upstream scissile peptide bond is consecutively rearranged into two thioester or oxoester intermediates before intein excision and rearrangement into the new peptide bond occurs. The catalytically critical amino acids involved at the two splice junctions are cysteine, serine, or threonine. Notably, the only potential combination not observed so far in any of the known or engineered inteins corresponds to the transesterification from an oxoester to a thioester, which suggested that this formal uphill reaction with regard to the thermodynamic stability might be incompatible with intein-mediated catalysis. We show that corresponding mutations also led to inactive gp41-1 and AceL-TerL inteins. We report the novel GOS-TerL split intein identified from metagenomic databases as the first intein harboring the combination of Ser1 and Cys+1 residues. Mutational analysis showed that its efficient splicing reaction indeed follows the shift from oxoester to thioester and thus represents a rare diversion from the canonical pathway. Furthermore, the GOS-TerL intein has an atypical split site close to the N terminus. The IntN fragment could be shortened from 37 to 28 amino acids and exchanged with the 25-amino acid IntN fragment from the AceL-TerL intein, indicating a high degree of promiscuity of the IntC fragment of the GOS-TerL intein.  相似文献   

5.
异源生物中筛选高剪接活性Intein系统的建立   总被引:1,自引:0,他引:1  
原始物种体内蛋白质内含子(intein)介导的自催化蛋白剪接反应以100%效率进行.当这些蛋白质内含子被克隆入异源物种时,其剪接效率往往大大降低,绝大多数甚至完全失去剪接能力.本研究根据蛋白质内含子剪接活性与蛋白质外显子(extein)C端第1个保守氨基酸直接相关的特点,设计含有所有这些保守氨基酸的多个短的蛋白质外显子序列,通过PCR引入到卡那霉素抗性蛋白(KanR)的不同位点中,在此外显子中克隆入相应的蛋白质内含子,构建在大肠杆菌中依赖卡那霉素抗性来筛选高剪接活性蛋白质内含子的系统.结果显示,卡那霉素平板上菌落生长的结果与Western印迹检测的结果基本一致.说明建立的筛选高剪接活性蛋白质内含子系统成功.这种含有可选择蛋白质外显子的筛选系统,将蛋白质剪接与卡那霉素抗性相结合,直接从平板上观测剪接结果,成为快速、稳定筛选在异源物种中具有剪接活性蛋白内含子的新手段.  相似文献   

6.
Many naturally occurring inteins consist of two functionally independent domains, a protein-splicing domain and an endonuclease domain. In a previous study, a 168 amino acid residue mini-intein was generated by removal of the central endonuclease domain of the 440 residue Mycobacterium tuberculosis (Mtu) recA intein. In addition, directed evolution experiments identified a mutation, V67L, that improved the activity of the mini-intein significantly. A recent crystal structure shows that the loop connecting two beta-strands from the N-terminal and C-terminal intein subdomains of the mini-intein is disordered. The goals of the present study were to generate smaller mini-intein derivatives and to understand the basis for reversal of the splicing defect by the V67L mutation. Guided by the structural information, we generated a number of derivatives 135 to 152 residues in length, with V67 or L67. All of the new minimal inteins are functional in splicing. In vivo selection experiments for function showed that by removal of the loop region, 137 residues may be the lower limit for full protein-splicing activity. In addition, the activation effect of the V67L mutation was observed to be universal for mini-inteins longer than 137 residues. Structural and functional analyses indicate that the role of the mutation is in stabilization of the mini-intein core.  相似文献   

7.
Inteins mediate protein splicing, which has found many applications in biotechnology and protein engineering. A single valine-to-leucine mutation (V67L) can globally enhance splicing and related cleavage reactions in minimized Mycobacterium tuberculosis RecA inteins. However, V67L mutation causes little change in crystal structures. To test whether protein dynamics contribute to activity enhancement in the V67L mutation, we have studied the conformations and dynamics of the minimized and engineered intein ΔΔIhh-V67CM and a single V67L mutant, ΔΔIhh-L67CM, by solution NMR. Chemical shift perturbations established that the V67L mutation causes global changes, including changes at the N-terminus and C-terminus of the intein, which are active sites for protein splicing. The single V67L mutation significantly slows hydrogen-exchange rates globally, indicating a shift to more stable conformations and reduction in ensemble distribution. Whereas the V67L mutation causes little change for motions on the picosecond-to-nanosecond timescale, motions on the microsecond-to-millisecond timescale affect a region involving the conserved F-block histidine and C-terminal asparagine, which are residues important for C-terminal cleavage. The V67L mutation is proposed to activate splicing by reducing the ensemble distribution of the intein structure and by modifying the active sites.  相似文献   

8.
蛋白质内含子演化分析   总被引:1,自引:0,他引:1  
蛋白质内含子是能够自我剪切的一段多肽链 .它在生物三大系统中都存在 ,但它的分布在各物种间以及蛋白质种类之间极不均衡 .蛋白质内含子的演化和扩散也因此引起了人们的极大兴趣 .经过系统搜索 ,从已知的核酸序列中找到 6 9个经典的蛋白质内含子 .同源比较和系统树分析表明 ,蛋白质内含子的演化应综合先天遗传和后天转移两方面的因素 .  相似文献   

9.
The majority of inteins are comprised of a protein splicing domain and a homing endonuclease domain. Experimental evidence has demonstrated that the splicing domain and the endonuclease domain in a bifunctional intein are largely independent of each other with respect to both structure and activity. Here, an artificial bifunctional intein has been created through the insertion of an existing homing endonuclease into a mini-intein that is naturally lacking this functionality. The gene for I-CreI, an intron-encoded homing endonuclease, was grafted into the monofunctional Mycobacterium xenopi GyrA intein at the putative site of the missing endonuclease. The resulting fusion protein was found to be capable of protein splicing similar to that of the parent intein. In addition, the protein demonstrated site-specific endonuclease activity that is characteristic of the I-CreI homing endonuclease. The function of each domain therefore remained unaffected by the presence of the other domain. This artificial fusion of the two domains is a potential novel mobile genetic element.  相似文献   

10.
Inteins are internal protein sequences capable of catalyzing a protein splicing reaction by self-excising from a precursor protein and simultaneously joining the flanking sequences with a peptide bond. Split inteins have separate pieces (N-intein and C-intein) that reassemble non-covalently to catalyze a protein trans-splicing reaction joining two polypeptides. Protein splicing has become increasingly useful tools in many fields of biological research and biotechnology. However, natural and engineered inteins have failed previously to function when being flanked by proline residue at the −1 or +2 positions, which limits general uses of inteins. In this study, different engineered inteins were tested. We found that engineered Ssp DnaX mini-intein and split inteins could carry out protein splicing with proline at the +2 positions or at both −1 and +2 positions. Under in vivo conditions in E. coli cells, the mini-intein, S1 split intein, and S11 split intein spliced efficiently, whereas the S0 split intein did not splice with proline at both −1 and +2 positions. The S1 and S11 split inteins also trans-spliced efficiently in vitro with proline at the +2 positions or at both −1 and +2 positions, but the S0 split intein trans-spliced inefficiently with proline at the +2 position and did not trans-splice with proline at both −1 and +2 positions. These findings contribute significantly to the toolbox of intein-based technologies by allowing the use of inteins in proteins having proline at the splicing point.  相似文献   

11.
An intein is a polypeptide that interrupts the functional domains of a protein, called the exteins. The intein can facilitate its own excision from the exteins, concomitant with the ligation of the exteins, in a process called protein splicing. The alpha subunit of the ribonucleotide reductase of the extreme thermophile Pyrococcus abyssi is interrupted by three inteins in separate insertion sites. Each intein can facilitate protein splicing when over-expressed in Escherichia coli, with affinity domains serving as the exteins. The influence of the N-terminal flanking residue on the efficiency of splicing is specific to each intein. Each intein has a different downstream nucleophilic residue, and cannot tolerate substitution to a residue of lesser or equal nucleophilicity. The influence of the conserved penultimate His also differs between the inteins.  相似文献   

12.
An intein-based positive genetic selection system was developed to study protein splicing and to provide a selection system with the potential for finding splicing inhibitors. Inteins can be novel antimicrobial targets when present in essential proteins since blocking splicing would kill the organism. For example, pathogenic mycobacteria encode inteins that interrupt DNA gyrase. The gyrase selection system exploits (1) splicing of inteins out of Gyrase A and (2) the dominant lethal effect of quinolone poisoning of DNA gyrase, which in turn blocks replication. The system was adapted for whole-cell high-throughput screening using green fluorescent protein as an automatable readout of viability. To demonstrate the efficacy of this system, mutations that blocked splicing of the Mycobacterium xenopi Gyrase A intein were isolated. Splicing was then assayed at a second temperature to identify inteins with a temperature-sensitive splicing phenotype. Mutations were mapped onto a structure-based sequence alignment, which led to the rational prediction of a temperature-sensitive splicing mutation. GyrA intein subdomain relationships also provided insight into intein evolution.  相似文献   

13.
《Gene》1998,210(1):85-92
A new intein coding sequence was found in a topA (DNA topoisomerase I) gene by cloning and sequencing this gene from the hyperthermophilic Archaeon Pyrococcus furiosus. The predicted Pfu topA intein sequence is 373 amino acids long and located two residues away from the catalytic tyrosine of the topoisomerase. It contains putative intein sequence blocks (C, E, and H) associated with intein endonuclease activity, in addition to intein sequence blocks (A, B, F, and G) that are necessary for protein splicing. This DNA topoisomerase I intein is most related to a reverse gyrase intein from the methanogenic Archaeon Methanococcus jannaschii. These two inteins share 31% amino acid sequence identity and, more importantly, have the same insertion sites in their respective host proteins. It is suggested that these two inteins are homologous inteins present in structurally related, but functionally distinct, proteins, with implications on intein evolution and intein homing.  相似文献   

14.
Protein splicing     
Protein splicing is a posttranslational process that results in excision of an internal protein region (intein) and ligation of its flanking sequences (exteins). As distinguished from other variants of protein processing, protein splicing does not require cofactors of enzymes. Protein splicing is catalyzed by an internal domain (so-called Hint domain) of the intein itself. The review considers the main regularities and molecular mechanisms of the process, as well as the functions of Hint domains in other protein families (Hh proteins, bacterial BIL domains, etc.). Studies of protein splicing are of importance from both theoretical and applied viewpoints. For instance, comparisons of the inteins found in different domains of life illustrate the role of horizontal transfer in intein spreading. A possible role of inteins in regulating several cell processes is discussed on the basis of recent data.  相似文献   

15.
Mycobacterium leprae recA harbors an in‐frame insertion sequence that encodes an intein homing endonuclease (PI‐MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their active center. A common feature of LAGLIDADG‐type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI‐MleI is distinctive from other members of the family of LAGLIDADG‐type HEases for its modular structure with functionally separable domains for DNA‐binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI‐MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active‐site residues essential for DNA target site recognition and double‐stranded DNA cleavage, we performed site‐directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild‐type PI‐MleI and its variants disclosed that the two amino acid residues, Asp122 (in Block C) and Asp193 (in functional Block E), are crucial to the double‐stranded DNA endonuclease activity, whereas Asp218 (in pseudo‐Block E) is not. However, despite the reduced catalytic activity, the PI‐MleI variants, like the wild‐type PI‐MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA‐binding affinities, but abolished the double‐stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double‐stranded DNA cleavage activity, compared with the wild‐type PI‐MleI. These results provide compelling evidence that Asp122 and Asp193 in DOD motif I and II, respectively, are bona fide active‐site residues essential for DNA cleavage activity. The implications of these results are discussed in this report.  相似文献   

16.
Ellilä S  Jurvansuu JM  Iwaï H 《FEBS letters》2011,585(21):3471-3477
Protein splicing catalyzed by inteins has enabled various biotechnological applications such as protein ligation. Successful applications of inteins are often limited by splicing efficiency. Here, we report the comparison of protein splicing between 20 different inteins from various organisms in identical contexts to identify robust inteins with foreign exteins. We found that RadA intein from Pyrococcus horikoshii and an engineered DnaB intein from Nostoc punctiforme demonstrated an equally efficient splicing activity to the previously reported highly efficient DnaE intein from Nostoc punctiforme. The newly identified inteins with efficient cis-splicing activity can be good starting points for the further development of new protein engineering tools.  相似文献   

17.
《Gene》1998,207(2):187-195
Most protein-splicing elements (inteins) function both as catalysts of protein splicing and as homing endonucleases. In order to identify the domains of inteins that are essential for protein splicing, the intein sequence embedded in the recA gene of Mycobacterium tuberculosis was genetically dissected. The effect of various modifications of the intein on the ability to mediate splicing was studied in Escherichia coli transformed with plasmids in which the coding sequence for the RecA intein was inserted in-frame between coding regions for the E. coli maltose-binding protein and a polypeptide containing a hexahistidine sequence as the N- and C-exteins, respectively. One type of genetic alteration of the RecA intein involved deletion of the the central region encoding 229 amino acids (aa), representing the entire homing endonuclease homology domain. The residual intein (211 aa plus an undecapeptide spacer) was able to promote protein splicing as efficiently as the wild-type intein, indicating that the homing endonuclease domain plays no role in the protein-splicing process and that the protein-splicing active center is confined to the N- and C-terminal segments of the intein, less than 110 aa each. Another type of alteration involved the introduction of overlapping translation termination and initiation codons in-frame into the intein coding region. The modified RecA intein, although synthesized as two separate components, could nevertheless mediate protein splicing, indicating that the N- and C-terminal protein-splicing domains can interact with sufficient affinity and specificity to allow protein-splicing to occur in trans. The efficiency of trans-splicing was much enhanced when the homing endonuclease domain was entirely deleted so that the length of the interacting N- and C-terminal intein fragments was only about 110 aa each.  相似文献   

18.
Mycobacterium tuberculosis harbors three protein splicing elements, called inteins, in critical genes and their protein products. Post-translational removal of the inteins occurs autocatalytically and is required for function of the respective M. tuberculosis proteins. Inteins are therefore potential targets for antimycobacterial agents. In this work, we report that the splicing activity of the intein present in the RecA recombinase of M. tuberculosis is potently inhibited by the anticancer drug cisplatin (cis-diamminedichloro-platinum(II)). This previously unrecognized activity of cisplatin was established using both an in vitro intein splicing assay, which yielded an IC(50) of ~2 μM, and a genetic reporter for intein splicing in Escherichia coli. Testing of related platinum(II) complexes indicated that the inhibition activity is highly structure-dependent, with cisplatin exhibiting the best inhibitory effect. Finally, we report that cisplatin is toxic toward M. tuberculosis with a minimum inhibitory concentration of ~40 μM, and in genetic experiments conducted with the related Mycobacterium bovis bacillus Calmette-Guérrin (BCG) strain, we show that cisplatin toxicity can be mitigated by intein overexpression. We propose that cisplatin inhibits intein activity by modifying at least one conserved cysteine residue that is required for splicing. Together these results identify a novel active site inhibitor of inteins and validate inteins as viable targets for small molecule inhibition in mycobacteria.  相似文献   

19.
Protein splicing is a posttranslational modification where intervening proteins (inteins) cleave themselves from larger precursor proteins and ligate their flanking polypeptides (exteins) through a multistep chemical reaction. First thought to be an anomaly found in only a few organisms, protein splicing by inteins has since been observed in microorganisms from all domains of life. Despite this broad phylogenetic distribution, all inteins share common structural features such as a horseshoe-like pseudo two-fold symmetric fold, several canonical sequence motifs, and similar splicing mechanisms. Intriguingly, the splicing efficiencies and substrate specificity of different inteins vary considerably, reflecting subtle changes in the chemical mechanism of splicing, linked to their local structure and dynamics. As intein chemistry has widespread use in protein chemistry, understanding the structural and dynamical aspects of inteins is crucial for intein engineering and the improvement of intein-based technologies.  相似文献   

20.
Naturally split inteins mediate a traceless protein ligation process known as protein trans‐splicing (PTS). Although frequently used in protein engineering applications, the efficiency of PTS can be reduced by the tendency of some split intein fusion constructs to aggregate; a consequence of the fragmented nature of the split intein itself or the polypeptide to which it is fused (the extein). Here, we report a strategy to help address this liability. This involves embedding the split intein within a protein sequence designed to stabilize either the intein fragment itself or the appended extein. We expect this approach to increase the scope of PTS‐based protein engineering efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号