首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.  相似文献   

2.
SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine scan strategy. SARS-CoV pseudotyped with mutated S protein was used to measure viral infectivity. To restore the aromaticity of Ala-mutants, we performed rescue experiments using phenylalanine substitutions. Our results show that individually substituted Ala-mutants substantially decrease infectivity by >90%, global Ala-mutants totally abrogated infectivity. In contrast, Phe-substituted mutants are able to restore 10-25% infectivity comparing to the wild-type. The results suggest that the Trp-rich region of S protein is essential for SARS-CoV infectivity.  相似文献   

3.
The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S Delta19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S Delta19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S Delta19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.  相似文献   

4.
A “HFPK3” peptide containing the 23 residues of the human immunodeficiency virus (HIV) fusion peptide (HFP) plus three non-native C-terminal lysines was studied in dodecylphosphocholine (DPC) micelles with 2D 1H NMR spectroscopy. The HFP is at the N-terminus of the gp41 fusion protein and plays an important role in fusing viral and target cell membranes which is a critical step in viral infection. Unlike HFP, HFPK3 is monomeric in detergent-free buffered aqueous solution which may be a useful property for functional and structural studies. Hα chemical shifts indicated that DPC-associated HFPK3 was predominantly helical from I4 to L12. In addition to the highest-intensity crosspeaks used for the first chemical shift assignment (denoted I), there were additional crosspeaks whose intensities were ∼ 10% of those used for assignment I. A second assignment (II) for residues G5 to L12 as well as a few other residues was derived from these lower-intensity crosspeaks. Relative to the I shifts, the II shifts were different by 0.01-0.23 ppm with the largest differences observed for HN. Comparison of the shifts of DPC-associated HFPK3 with those of detergent-associated HFP and HFP derivatives provided information about peptide structures and locations in micelles.  相似文献   

5.
Familial deficiency of protein C is associated with inherited thrombophilia. To explore how specific missense mutations might cause observed clinical phenotypes, known protein C missense mutations were mapped onto three-dimensional homology models of the protein C protease domain, and the implications for domain folding and structure were evaluated. Most Type I missense mutations either replaced internal hydrophobic residues (I201T, L223F, A259V, A267T, A346T, A346V, G376D) or nearby interacting residues (I403M, T298M, Q184H), thus disrupting the packing of internal hydrophobic side chains, or changed hydrophilic residues, thus disrupting ion pairs (N256D, R178W). Mutations (P168L, R169W) at the activation site destabilized the region containing the activation peptide structure. Most Type II mutations involved solvent-exposed residues and were clustered either in a positively charged region (R147W, R157Q, R229Q, R352W) or were located in or near the active site region (S252N, D359N, G381S, G391S, H211Q). The cluster of arginines 147, 157, 229, and 352 may identify a functionally important exosite. Identification of the spatial relationships of natural mutations in the protein C model is helpful for understanding manifestations of protein C deficiency and for identification of novel, functionally important molecular features and exosites. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Many viral fusion proteins are primed by proteolytic cleavage near their fusion peptides. While the coronavirus (CoV) spike (S) protein is known to be cleaved at the S1/S2 boundary, this cleavage site is not closely linked to a fusion peptide. However, a second cleavage site has been identified in the severe acute respiratory syndrome CoV (SARS-CoV) S2 domain (R797). Here, we investigated whether this internal cleavage of S2 exposes a viral fusion peptide. We show that the residues immediately C-terminal to the SARS-CoV S2 cleavage site SFIEDLLFNKVTLADAGF are very highly conserved across all CoVs. Mutagenesis studies of these residues in SARS-CoV S, followed by cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for residues L803, L804, and F805 in membrane fusion. Mutation of the most N-terminal residue (S798) had little or no effect on membrane fusion. Biochemical analyses of synthetic peptides corresponding to the proposed S2 fusion peptide also showed an important role for this region in membrane fusion and indicated the presence of α-helical structure. We propose that proteolytic cleavage within S2 exposes a novel internal fusion peptide for SARS-CoV S, which may be conserved across the Coronaviridae.The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2003 as a significant threat to human health, and CoVs still represent a leading source of novel viruses for emergence into the human population. The CoV spike (S) protein mediates both receptor binding (via the S1 domain) and membrane fusion (via the S2 domain) and shows many features of a class I fusion protein, including the presence of distinct heptad repeats within the fusion domain (37). A critical feature of any viral fusion protein is the so-called “fusion peptide,” which is a relatively apolar region of 15 to 25 amino acids that interacts with membranes and drives the fusion reaction (9, 34, 38). Fusion peptides can be classified as N-terminal or internal, depending on their location relative to the cleavage site of the virus fusion protein (23). One key feature of viral fusion peptides is that within a particular virus family, there is high conservation of amino acid residues; however, there is little similarity between fusion peptides of different virus families (26). Despite these differences, some common themes do emerge, including a high level of glycine and/or alanine residues, as well as critical bulky hydrophobic amino acids. In several cases, the fusion peptide is known to contain a central “kink.” In the case of influenza virus hemagglutinin (HA), which is a classic example of an N-terminal fusion peptide, the N- and C-terminal parts of the fusion peptide (which are α-helical) penetrate the outer leaflet of the target membrane, with the kink at the phospholipid surface. The inside of the kink contains hydrophobic amino acids, with charged residues on the outer face (18). Internal fusion peptides (such as Ebola virus [EBOV] GP) often contain a conserved proline near their centers but also require a mixture of hydrophobic and flexible residues similar to N-terminal fusion peptides (9, 11). It is believed that the kinked fusion peptide sits in the outer leaflet of the target membrane and possibly induces positive curvature to drive the fusion reaction (22). It is important to note that, despite the presence of key hydrophobic residues, viral fusion peptides often do not display extensive stretches of hydrophobicity and can contain one or more charged residues (8). Ultimately, fusion peptide identification must rely on an often complex set of criteria, including structures of the fusion protein in different conformations, biophysical measurements of peptide function in model membranes, and biological activity in the context of virus particles.To date, the exact location and sequence of the CoV fusion peptide are not known (4); however, by analogy with other class I viral fusion proteins, it is predicted to be in the S2 domain. Overall, three membranotropic regions in SARS-CoV S2 have been suggested as potential fusion peptides (14, 17). Based on sequence analysis and a hydrophobicity analysis of the S protein using the Wimley-White (WW) interfacial hydrophobic interface scale, initial indications were that the SARS-CoV fusion peptide resided in the N-terminal part of HR1 (heptad repeat 1) (5, 6), which is conserved across the Coronaviridae. Mutagenesis of this predicted fusion peptide inhibited fusion in syncytia assays of S-expressing cells (28). This region of SARS-CoV has also been analyzed by other groups in biochemical assays (16, 17, 29) and defined as the WW II region although Sainz et al. (29) actually identified another, less conserved and less hydrophobic, region (WW I) as being more important for fusion. Peptides corresponding to this region have also been studied in biochemical assays by other groups (13). In addition, a third, aromatic region adjacent to the transmembrane domain (the membrane-proximal domain) has been shown to be important in SARS-CoV fusion (15, 20, 25, 30). This membrane-proximal domain likely acts in concert with a fusion peptide in the S2 ectodomain to mediate final bilayer fusion once conformational changes have exposed the fusion peptide in the ectodomain. To date, there is little or no information on the fusion peptides of CoVs other than SARS-CoV, except for the identification of the N-terminal part of the mouse hepatitis virus (MHV) S HR1 domain as a putative fusion peptide based on sequence analysis (6). In none of these cases (for SARS-CoV or MHV) is the role of these sequences as bone fide fusion peptides established.The majority of class I fusion proteins prime fusion activation by proteolytic processing, with the cleavage event occurring immediately N-terminal to the fusion peptide (21). In the case of SARS-CoV, early reports analyzing heterologously expressed SARS-CoV spike protein indicated that most of the protein was not cleaved (31, 39) but that there was some possibility of limited cleavage at the S1-S2 boundary (39). However, it is generally considered that S1-S2 cleavage is not directly linked to fusion peptide exposure in the case of SARS-CoV or any other CoV (4). Recently, however, it has been shown that SARS-CoV S can be proteolytically cleaved at a downstream position in S2, at residue 797 (2, 36). Here, we investigated whether cleavage at this internal position in S2 might expose a domain with properties of a viral fusion peptide. We carried out a mutagenesis study of SARS-CoV S residues 798 to 815 using cell-cell fusion and pseudovirus assays, as well as lipid mixing and structural studies of an isolated peptide, and we show the importance of this region as a novel fusion peptide for SARS-CoV.  相似文献   

7.
Yi CE  Ba L  Zhang L  Ho DD  Chen Z 《Journal of virology》2005,79(18):11638-11646
Neutralizing antibodies (NAbs) against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) spike (S) glycoprotein confer protection to animals experimentally infected with the pathogenic virus. We and others previously demonstrated that a major mechanism for neutralizing SARS-CoV was through blocking the interaction between the S glycoprotein and the cellular receptor angiotensin-converting enzyme 2 (ACE2). In this study, we used in vivo electroporation DNA immunization and a pseudovirus-based assay to functionally evaluate immunogenicity and viral entry. We characterized the neutralization and viral entry determinants within the ACE2-binding domain of the S glycoprotein. The deletion of a positively charged region Sdelta(422-463) abolished the capacity of the S glycoprotein to induce NAbs in mice vaccinated by in vivo DNA electroporation. Moreover, the Sdelta(422-463) pseudovirus was unable to infect HEK293T-ACE2 cells. To determine the specific residues that contribute to related phenotypes, we replaced eight basic amino acids with alanine. We found that a single amino acid substitution (R441A) in the full-length S DNA vaccine failed to induce NAbs and abolished viral entry when pseudoviruses were generated. However, another substitution (R453A) abolished viral entry while retaining the capacity for inducing NAbs. The difference between R441A and R453A suggests that the determinants for immunogenicity and viral entry may not be identical. Our findings provide direct evidence that these basic residues are essential for immunogenicity of the major neutralizing domain and for viral entry. Our data have implications for the rational design of vaccine and antiviral agents as well as for understanding viral tropism.  相似文献   

8.
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is a newly identified member of Family Coronaviridae. Coronavirus envelope spike protein S is a class I viral fusion protein which is characterized by the existence of two heptad repeat regions (HR1 and HR2) (forming a complex called fusion core). Here we report that by using in vitro bio-engineering techniques, SARS-CoV HR1 and HR2 bind to each other and form a typical 6-helix bundle. The HR2, either as a synthetic peptide or as a GST-fusion polypeptide, is a potent inhibitor of virus entry. The results do show that SARS-CoV follows the general fusion mechanism of class I viruses and this lays the ground for identification of virus fusion/entry inhibitors for this devastating emerging virus.  相似文献   

9.
The envelope spike (S) glycoprotein of the severe acute respiratory syndrome associated coronavirus (SARS-CoV) mediates the entry of the virus into target cells. Recent studies point out to a cell entry mechanism of this virus similar to other enveloped viruses, such as HIV-1. As it happens with other viruses peptidic fusion inhibitors, SARS-CoV S protein HR2-derived peptides are potential therapeutic drugs against the virus. It is believed that HR2 peptides block the six-helix bundle formation, a key structure in the viral fusion, by interacting with the HR1 region. It is a matter of discussion if the HIV-1 gp41 HR2-derived peptide T20 (enfuvirtide) could be a possible SARS-CoV inhibitor given the similarities between the two viruses. We tested the possibility of interaction between both T20 (HIV-1 gp41 HR2-derived peptide) and T-1249 with S protein HR1- and HR2-derived peptides. Our biophysical data show a significant interaction between a SARS-CoV HR1-derived peptide and T20. However, the interaction is only moderate (K(B)=(1.1+/-0.3)x10(5) M(-1)). This finding shows that the reasoning behind the hypothesis that T20, already approved for clinical application in AIDS treatment, could inhibit the fusion of SARS-CoV with target cells is correct but the effect may not be strong enough for application.  相似文献   

10.
The type II transmembrane serine proteases TMPRSS2 and HAT can cleave and activate the spike protein (S) of the severe acute respiratory syndrome coronavirus (SARS-CoV) for membrane fusion. In addition, these proteases cleave the viral receptor, the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), and it was proposed that ACE2 cleavage augments viral infectivity. However, no mechanistic insights into this process were obtained and the relevance of ACE2 cleavage for SARS-CoV S protein (SARS-S) activation has not been determined. Here, we show that arginine and lysine residues within ACE2 amino acids 697 to 716 are essential for cleavage by TMPRSS2 and HAT and that ACE2 processing is required for augmentation of SARS-S-driven entry by these proteases. In contrast, ACE2 cleavage was dispensable for activation of the viral S protein. Expression of TMPRSS2 increased cellular uptake of soluble SARS-S, suggesting that protease-dependent augmentation of viral entry might be due to increased uptake of virions into target cells. Finally, TMPRSS2 was found to compete with the metalloprotease ADAM17 for ACE2 processing, but only cleavage by TMPRSS2 resulted in augmented SARS-S-driven entry. Collectively, our results in conjunction with those of previous studies indicate that TMPRSS2 and potentially related proteases promote SARS-CoV entry by two separate mechanisms: ACE2 cleavage, which might promote viral uptake, and SARS-S cleavage, which activates the S protein for membrane fusion. These observations have interesting implications for the development of novel therapeutics. In addition, they should spur efforts to determine whether receptor cleavage promotes entry of other coronaviruses, which use peptidases as entry receptors.  相似文献   

11.
The distribution of the severe acute respiratory syndrome coronavirus (SARS-CoV) receptor, an angiotensin-converting enzyme 2 (ACE2), does not strictly correlate with SARS-CoV cell tropism in lungs; therefore, other cellular factors have been predicted to be required for activation of virus infection. In the present study, we identified transmembrane protease serine 2 (TMPRSS2), whose expression does correlate with SARS-CoV infection in the upper lobe of the lung. In Vero cells expressing TMPRSS2, large syncytia were induced by SARS-CoV infection. Further, the lysosome-tropic reagents failed to inhibit, whereas the heptad repeat peptide efficiently inhibited viral entry into cells, suggesting that TMPRSS2 affects the S protein at the cell surface and induces virus-plasma membrane fusion. On the other hand, production of virus in TMPRSS2-expressing cells did not result in S-protein cleavage or increased infectivity of the resulting virus. Thus, TMPRSS2 affects the entry of virus but not other phases of virus replication. We hypothesized that the spatial orientation of TMPRSS2 vis-a-vis S protein is a key mechanism underling this phenomenon. To test this, the TMPRSS2 and S proteins were expressed in cells labeled with fluorescent probes of different colors, and the cell-cell fusion between these cells was tested. Results indicate that TMPRSS2 needs to be expressed in the opposing (target) cell membrane to activate S protein rather than in the producer cell, as found for influenza A virus and metapneumoviruses. This is the first report of TMPRSS2 being required in the target cell for activation of a viral fusion protein but not for the S protein synthesized in and transported to the surface of cells. Our findings suggest that the TMPRSS2 expressed in lung tissues may be a determinant of viral tropism and pathogenicity at the initial site of SARS-CoV infection.  相似文献   

12.
To understand the roles of heptad repeat 1(HR1) and HR2 of the spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) in virus-cell interactions, the conserved Leu or Ile residues located at positions 913, 927, 941, and 955 in HR1 and 1151, 1165, and 1179 in HR2 were individually replaced with an alpha-helix-breaker Pro residue. The 913P mutant was expressed mainly as a faster-migrating, lower-molecular-weight S(L) form, while the wild type and all other mutants produced similar levels of both the S(L) form and the slower-migrating, higher-molecular-weight S(H) form. The wild-type S(L) form was processed to the S(H) form, whereas the S(L) form of the 913P mutant was inefficiently converted to the S(H) form after biosynthesis. None of these mutations affected cell surface expression or binding to its cognate ACE2 receptor. In a human immunodeficiency virus type 1/SARS S coexpression study, all mutants except the 913P mutant incorporated the S(H) form into the virions as effectively as did the wild-type S(H) form. The mutation at Ile-1151 did not affect membrane fusion or viral entry. The impaired viral entry of the 927P, 941P, 955P, and 1165P mutants was due to their inability to mediate membrane fusion, whereas the defect in viral entry of the 1179P mutant occurred not at the stage of membrane fusion but rather at a postfusion stage. Our study demonstrates the functional importance of HR1 and HR2 of the SARS-CoV spike protein in membrane fusion and viral entry.  相似文献   

13.
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941–50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111–1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus.  相似文献   

14.
Based on mutagenesis and structural studies of human immunodeficiency virus (HIV) envelope proteins, the loop region of gp41 is thought to directly interact with gp120. The importance of the HIV gp41 loop region to envelope function has been systematically examined by alanine scanning of all gp41 loop residues and the subsequent characterization of the mutagenic effects on viral entry, envelope expression, envelope processing, and gp120 association with gp41. With respect to the wild-type gp41, mutational effects on viral entry fall into four classes as follows: 1) little or no effect (G594A, S599A, G600A, K601A, N611A, S615A, N616A, and L619A); 2) significantly reduced entry (I595A, L602A, I603A, V608A, and K617A); 3) abolished entry (L593A, W596A, G597A, T606A, W610A, W614A, S618A, and I622A); and 4) enhanced entry (T605A, P609A, S613A, E620A, and Q621A). The reduced functionality of many mutants was apparently due to either disruption of envelope processing (L593A and T606A), viral incorporation of the envelope (W610A, W614A, and I662A), or increased dissociation of gp120 (W596A, G597A, and S618A). The extreme sensitivity of the gp120-gp41 interaction to alanine substitutions (e.g. the G597A and S618A mutants are relatively conservative substitutions) suggests that this association is an attractive and novel target for future drug discovery efforts.  相似文献   

15.
The spike (S) protein of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is not only responsible for receptor binding and virus fusion, but also a major Ag among the SARS-CoV proteins that induces protective Ab responses. In this study, we showed that the S protein of SARS-CoV is highly immunogenic during infection and immunizations, and contains five linear immunodominant sites (sites I to V) as determined by Pepscan analysis with a set of synthetic peptides overlapping the entire S protein sequence against the convalescent sera from SARS patients and antisera from small animals immunized with inactivated SARS-CoV. Site IV located in the middle region of the S protein (residues 528-635) is a major immunodominant epitope. The synthetic peptide S(603-634), which overlaps the site IV sequence reacted with all the convalescent sera from 42 SARS patient, but none of the 30 serum samples from healthy blood donors, suggesting its potential application as an Ag for developing SARS diagnostics. This study also provides information useful for designing SARS vaccines and understanding the SARS pathogenesis.  相似文献   

16.
Summary The spike (S) glycoprotein is thought to play a complex and central role in the biology and pathogenesis of SARS coronavirus infection. In this study, a recombinant protein (rS268, corresponding to residues 268–1255 of SARS-CoV S protein) was expressed in Escherichia coli and was purified to near homogeneity. After immunization with rS268, S protein-specific BALB/c antisera and mAbs were induced and confirmed using ELISA, Western blot and IFA. Several BALB/c mAbs were found to be effectively to neutralize the infection of Vero E6 cells by SARS-CoV in a dose-dependent manner. Systematic epitope mapping showed that all these neutralizing mAbs recognized a 15-residues peptide (CB-119) corresponding to residues 1143–1157 (SPDVDLGDISGINAS) that was located to the second heptad repeat (HR2) region of the SARS-CoV spike protein. The peptide CB-119 could specifically inhibit the interaction of neutralizing mAbs and spike protein in a dose-dependent manner. Further, neutralizing mAbs, but not control mAbs, could specifically interact with CB-119 in a dose-dependent manner. Results implicated that the second heptad repeat region of spike protein could be a good target for vaccine development against SARS-CoV.  相似文献   

17.

Background

Severe acute respiratory syndrome (SARS) is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV), whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2) is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41) differs in length, and has no sequence homology with S2.

Results

Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1) an N-terminal leucine/isoleucine zipper-like sequence, and (2) a C-terminal heptad repeat located upstream of (3) an aromatic residue-rich region juxtaposed to the (4) transmembrane segment.

Conclusions

This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.  相似文献   

18.
Shih YP  Chen CY  Liu SJ  Chen KH  Lee YM  Chao YC  Chen YM 《Journal of virology》2006,80(21):10315-10324
The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) uses dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) to facilitate cell entry via cellular receptor-angiotensin-converting enzyme 2. For this project, we used recombinant baculoviruses expressing different lengths of SARS-CoV spike (S) protein in a capture assay to deduce the minimal DC-SIGN binding region. Our results identified the region location between amino acid (aa) residues 324 to 386 of the S protein. We then generated nine monoclonal antibodies (MAbs) against the S protein to map the DC-SIGN-binding domain using capture assays with pseudotyped viruses and observed that MAb SIa5 significantly blocked S protein-DC-SIGN interaction. An enhancement assay using the HKU39849 SARS-CoV strain and human immature dendritic cells confirmed our observation. Data from a pepscan analysis and M13 phage peptide display library system mapped the reactive MAb SIa5 epitope to aa residues 363 to 368 of the S protein. Results from a capture assay testing three pseudotyped viruses with mutated N-linked glycosylation sites of the S protein indicate that only two pseudotyped viruses (N330Q and N357Q, both of which lost glycosylation sites near the SIa5 epitope) had diminished DC-SIGN-binding capacity. We also noted that MAb SIb4 exerted a neutralizing effect against HKU39849; its reactive epitope was mapped to aa residues 435 to 439 of the S protein. We offer the data to facilitate the development of therapeutic agents and preventive vaccines against SARS-CoV infection.  相似文献   

19.
The type II transmembrane protease TMPRSS2 activates the spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) on the cell surface following receptor binding during viral entry into cells. In the absence of TMPRSS2, SARS-CoV achieves cell entry via an endosomal pathway in which cathepsin L may play an important role, i.e., the activation of spike protein fusogenicity. This study shows that a commercial serine protease inhibitor (camostat) partially blocked infection by SARS-CoV and human coronavirus NL63 (HCoV-NL63) in HeLa cells expressing the receptor angiotensin-converting enzyme 2 (ACE2) and TMPRSS2. Simultaneous treatment of the cells with camostat and EST [(23,25)trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester], a cathepsin inhibitor, efficiently prevented both cell entry and the multistep growth of SARS-CoV in human Calu-3 airway epithelial cells. This efficient inhibition could be attributed to the dual blockade of entry from the cell surface and through the endosomal pathway. These observations suggest camostat as a candidate antiviral drug to prevent or depress TMPRSS2-dependent infection by SARS-CoV.  相似文献   

20.
The immunological characteristics of SARS-CoV spike protein were investigated by administering mice with plasmids encoding various S gene fragments. We showed that the secreting forms of S1, S2 subunits and the N-terminus of S1 subunit (residues 18-495) were capable of eliciting SARS-CoV specific antibodies and the region immediate to N-terminus of matured S1 protein contained an important immunogenic determinant for elicitation of SARS-CoV specific antibodies. In addition, mice immunized with plasmids encoding S1 fragment developed a Th1-mediated antibody isotype switching. Another interesting finding was that mouse antibodies elicited separately by plasmids encoding S1 and S2 subunits cooperatively neutralized SARS-CoV but neither the S1 nor S2 specific antibodies did, suggesting the possible role of both S1 and S2 subunits in host cell docking and entry. These results provide insights into understanding the immunological characteristics of spike protein and the development of subunit vaccines against SARS-CoV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号