首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IgE antibodies interact with the high affinity IgE Fc receptor, FcϵRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcϵRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of an IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcϵRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.  相似文献   

2.
A prototypic IgG antibody can be divided into two major structural units: the antigen-binding fragment (Fab) and the Fc fragment that mediates effector functions. The IgG Fc fragment is a homodimer of the two C-terminal domains (CH2 and CH3) of the heavy chains. Characteristic of the Fc part is the presence of a sugar moiety at the inner face of the CH2 domains. The structure of this complex branched oligosaccharide is generally resolved in crystal structures of Fc fragments due to numerous well-defined sugar-protein interactions and a small number of sugar-sugar interactions. This suggested that sugars play an important role in the structure of the Fc fragment. To address this question directly, we determined the crystal structure of the unglycosylated Fc fragment of the murine IgG1 MAK33. The structures of the CH3 domains of the unglycosylated Fc fragment superimpose perfectly with the structure of the isolated MAK33 CH3 domain. The unglycosylated CH2 domains, in contrast, approach each other much more closely compared to known structures of partly deglycosylated Fc fragments with rigid-body motions between 10 and 14 Å, leading to a strongly “closed” conformation of the unglycosylated Fc fragment. The glycosylation sites in the C′E loop and the BC and FG loops are well defined in the unglycosylated CH2 domain, however, with increased mobility and with a significant displacement of about 4.9 Å for the unglycosylated Asn residue compared to the glycosylated structure. Thus, glycosylation both stabilizes the C′E-loop conformation within the CH2 domain and also helps to ensure an “open” conformation, as seen upon Fc receptor binding. These structural data provide a rationale for the observation that deglycosylation of antibodies often compromises their ability to bind and activate Fcγ receptors.  相似文献   

3.
Human IgG4, normally the least abundant of the four subclasses of IgG in serum, displays a number of unique biological properties. It can undergo heavy-chain exchange, also known as Fab-arm exchange, leading to the formation of monovalent but bispecific antibodies, and it interacts poorly with FcγRII and FcγRIII, and complement. These properties render IgG4 relatively “non-inflammatory” and have made it a suitable format for therapeutic monoclonal antibody production. However, IgG4 is also known to undergo Fc-mediated aggregation and has been implicated in auto-immune disease pathology. We report here the high-resolution crystal structures, at 1.9 and 2.35 Å, respectively, of human recombinant and serum-derived IgG4-Fc. These structures reveal conformational variability at the CH3–CH3 interface that may promote Fab-arm exchange, and a unique conformation for the FG loop in the CH2 domain that would explain the poor FcγRII, FcγRIII and C1q binding properties of IgG4 compared with IgG1 and -3. In contrast to other IgG subclasses, this unique conformation folds the FG loop away from the CH2 domain, precluding any interaction with the lower hinge region, which may further facilitate Fab-arm exchange by destabilisation of the hinge. The crystals of IgG4-Fc also display Fc–Fc packing contacts with very extensive interaction surfaces, involving both a consensus binding site in IgG-Fc at the CH2–CH3 interface and known hydrophobic aggregation motifs. These Fc–Fc interactions are compatible with intact IgG4 molecules and may provide a model for the formation of aggregates of IgG4 that can cause disease pathology in the absence of antigen.  相似文献   

4.
N6-(3-Iodobenzyl)adenosine-5′-N-methyluronamide (1a, IB-MECA) exhibited polypharmacological characteristics targeting A3 adenosine receptor (AR), peroxisome proliferator-activated receptor (PPAR) γ, and PPARδ, simultaneously. The bioisosteric replacement of oxygen in 4′-oxoadenosines with selenium significantly increased the PPARδ-binding activity. 2-Chloro-N6-(3-iodobenzyl)-4′-selenoadenosine-5′-N-methyluronamide (3e) and related 4′-selenoadenosine derivatives significantly enhanced adiponectin biosynthesis during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). The PPARδ-binding affinity, but not the A3 AR binding affinity, of 4′-selenoadenosine derivatives correlated with their adiponectin secretion stimulation. Compared with the sugar ring of 4′-oxoadenosine, that of 4′-selenoadenosine was more favorable in forming the South sugar conformation. In the molecular docking simulation, the South sugar conformation of compound 3e formed additional hydrogen bonds inside the PPARδ ligand-binding pocket compared with the North conformation. Therefore, the sugar conformation of 4′-selenoadenosine PPAR modulators affects the ligand binding affinity against PPARδ.  相似文献   

5.
Anti-human IgE monoclonal antibodies (mAbs) were produced and eight clones recognizing epitopes on native IgE were selected. Epitopes were mapped by a competitive inhibition enzyme-linked immunosorbent assay, Western blotting and a multi-pin peptide technology. Four sites (one each in the Cε1, Cε2, Cε2/Cε3 junction and Cε3) were recognized by the mAbs. The relationship between the four epitopes and the binding sites of high and low affinity IgE receptors (FcεRI and FcεRII, respectively) was studied using a monovalent Fab fragment of each mAb as a binding inhibitor. The IgE-FcεRII binding was clearly inhibited by the mAb recognizing the Cε2/Cε3 junction, suggesting that FcεRII binds to a rather limited area around the Cε2/Cε3 junction. The IgE-FcεRI binding, on the other hand, was scarcely inhibited by any single mAb. However, the binding was inhibited when the epitope in Cε2 was blocked simultaneously with that at the Cε2/Cε3 junction or with that in Cε3, indicating that these three distinct epitopes are related to the FcεRI binding sites. When these three epitopes were shown in the stereograph of human IgE, the FcεRI binding area was spread largely on the groove side between Cε2 and Cε3 domains. These results suggest that FcεRI acquires the high affinity through multiple bindings.  相似文献   

6.
The β2-adrenergic receptor (β2-AR) agonist [3H]-(R,R′)-methoxyfenoterol was employed as the marker ligand in displacement studies measuring the binding affinities (Ki values) of the stereoisomers of a series of 4′-methoxyfenoterol analogs in which the length of the alkyl substituent at α′ position was varied from 0 to 3 carbon atoms. The binding affinities of the compounds were additionally determined using the inverse agonist [3H]-CGP-12177 as the marker ligand and the ability of the compounds to stimulate cAMP accumulation, measured as EC50 values, were determined in HEK293 cells expressing the β2-AR. The data indicate that the highest binding affinities and functional activities were produced by methyl and ethyl substituents at the α′ position. The results also indicate that the Ki values obtained using [3H]-(R,R′)-methoxyfenoterol as the marker ligand modeled the EC50 values obtained from cAMP stimulation better than the data obtained using [3H]-CGP-12177 as the marker ligand. The data from this study was combined with data from previous studies and processed using the Comparative Molecular Field Analysis approach to produce a CoMFA model reflecting the binding to the β2-AR conformation probed by [3H]-(R,R′)-4′-methoxyfenoterol. The CoMFA model of the agonist-stabilized β2-AR suggests that the binding of the fenoterol analogs to an agonist-stabilized conformation of the β2-AR is governed to a greater extend by steric effects than binding to the [3H]-CGP-12177-stabilized conformation(s) in which electrostatic interactions play a more predominate role.  相似文献   

7.
Chitinases hydrolyze chitin, an insoluble linear polymer of N-acetyl-d-glucosamine (NAG)n, into nutrient sources. Bacillus cereus NCTU2 chitinase (ChiNCTU2) predominantly produces chitobioses and belongs to glycoside hydrolase family 18. The crystal structure of wild-type ChiNCTU2 comprises only a catalytic domain, unlike other chitinases that are equipped with additional chitin binding and insertion domains to bind substrates into the active site. Lacking chitin binding and chitin insertion domains, ChiNCTU2 utilizes two dynamic loops (Gly-67—Thr-69 and Ile-106–Val-112) to interact with (NAG)n, generating novel substrate binding and distortion for catalysis. Gln-109 is crucial for direct binding with substrates, leading to conformational changes of two loops with a maximum shift of ∼4.6 Å along the binding cleft. The structures of E145Q, E145Q/Y227F, and E145G/Y227F mutants complexed with (NAG)n reveal (NAG)2, (NAG)2, and (NAG)4 in the active site, respectively, implying various stages of reaction: before hydrolysis, E145G/Y227F with (NAG)4; in an intermediate state, E145Q/Y227F with a boat-form NAG at the −1 subsite, −1-(NAG); after hydrolysis, E145Q with a chair form −1-(NAG). Several residues were confirmed to play catalytic roles: Glu-145 in cleavage of the glycosidic bond between −1-(NAG) and +1-(NAG); Tyr-227 in the conformational change of −1-(NAG); Asp-143 and Gln-225 in stabilizing the conformation of −1-(NAG). Additionally, Glu-190 acts in the process of product release, and Tyr-193 coordinates with water for catalysis. Residues Asp-143, E145Q, Glu-190, and Tyr-193 exhibit multiple conformations for functions. The inhibitors zinc ions and cyclo-(l-His-l-Pro) are located at various positions and confirm the catalytic-site topology. Together with kinetics analyses of related mutants, the structures of ChiNCTU2 and its mutant complexes with (NAG)n provide new insights into its substrate binding and the mechanistic action.  相似文献   

8.
CD23, the low-affinity receptor for IgE (Fc epsilonRII), regulates IgE synthesis and also mediates IgE-dependent antigen transport and processing. CD23 is a unique Fc receptor belonging to the C-type lectin-like domain superfamily and binds IgE in an unusual, non-lectin-like manner, requiring calcium but not carbohydrate. We have solved the high-resolution crystal structures of the human CD23 lectin domain in the presence and absence of Ca2+. The crystal structures differ significantly from a previously determined NMR structure and show that calcium binding occurs at the principal binding site, but not at an auxiliary site that appears to be absent in human CD23. Conformational differences between the apo and Ca2+ bound structures suggest how IgE-Fc binding can be both calcium-dependent and carbohydrate-independent.  相似文献   

9.
The Old World monkey, Rhesus macaque (Macaca mulatta, Mm), is frequently used as a primate model organism in the study of human disease and to test new vaccines/antibody treatments despite diverging before chimpanzees and orangutans. Mm and humans share 93% genome identity with substantial differences in the genes of the adaptive immune system that lead to different functional IgG subclass characteristics, Fcγ receptors expressed on innate immune cells, and biological interactions. These differences put limitations on Mm use as a primary animal model in the study of human disease and to test new vaccines/antibody treatments. Here, we comprehensively analyzed molecular properties of the Fc domain of the four IgG subclasses of Rhesus macaque to describe potential mechanisms for their interactions with effector cell Fc receptors. Our studies revealed less diversity in the overall structure among the Mm IgG Fc, with MmIgG1 Fc being the most structurally like human IgG3, although its CH2 loops and N297 glycan mobility are comparable to human IgG1. Furthermore, the Fcs of Mm IgG3 and 4 lack the structural properties typical for their human orthologues that determine IgG3’s reduced interaction with the neonatal receptor and IgG4’s ability for Fab-arm exchange and its weaker Fcγ receptor interactions. Taken together, our data indicate that MmIgG1-4 are less structurally divergent than the human IgGs, with only MmIgG1 matching the molecular properties of human IgG1 and 3, the most active IgGs in terms of Fcγ receptor binding and Fc-mediated functions. PDB accession numbers for deposited structures are 6D4E, 6D4I, 6D4M, and 6D4N for MmIgG1 Fc, MmIgG2 Fc, MmIgG3 Fc, and MmIgG4 Fc, respectively.  相似文献   

10.
Antibody-dependent cellular cytotoxicity (ADCC) is mediated through the engagement of the Fc segment of antibodies with Fcγ receptors (FcγRs) on immune cells upon binding of tumor or viral antigen. The co-crystal structure of FcγRIII in complex with Fc revealed that Fc binds to FcγRIII asymmetrically with two Fc chains contacting separate regions of the FcγRIII by utilizing different residues. To fully explore this asymmetrical nature of the Fc-FcγR interaction, we screened more than 9,000 individual clones in Fc heterodimer format in which different mutations were introduced at the same position of two Fc chains using a high throughput competition AlphaLISA® assay. To this end, we have identified a panel of novel Fc variants with significant binding improvement to FcγRIIIA (both Phe-158 and Val-158 allotypes), increased ADCC activity in vitro, and strong tumor growth inhibition in mice xenograft human tumor models. Compared with previously identified Fc variants in conventional IgG format, Fc heterodimers with asymmetrical mutations can achieve similar or superior potency in ADCC-mediated tumor cell killing and demonstrate improved stability in the CH2 domain. Fc heterodimers also allow more selectivity toward activating FcγRIIA than inhibitory FcγRIIB. Afucosylation of Fc variants further increases the affinity of Fc to FcγRIIIA, leading to much higher ADCC activity. The discovery of these Fc variants will potentially open up new opportunities of building the next generation of therapeutic antibodies with enhanced ADCC effector function for the treatment of cancers and infectious diseases.  相似文献   

11.
A soluble fragment of the high-affinity IgE receptor FcεRI α-chain (sFcεRIα) binds to the Fc fragment of IgE (IgE-Fc) as a 1:1 complex. IgE-Fc consists of a dimer of the Cε2, Cε3 and Cε4 domains of the ε-heavy chain of IgE. This region of IgE has been modelled on the crystal structure of the Fc region of IgG1, which exhibits twofold rotational symmetry. This implies that IgE should be divalent with respect to its ligands. X-ray scattering studies reveal however that the twofold rotational symmetry of IgE-Fc is perturbed by a bend in the linker region between the Cε2 and Cε3 domains. The 1:1 stoichiometry could then arise from the conformational asymmetry or from steric occlusion of one of the sites by the overhanging Cε2 domains. To test this hypothesis we have expressed a recombinant ε-chain fragment containing Cε3 and Cε4. This product, Fcε3–4, is secreted from cells as a disulphide linked dimer and binds with higher affinity than either IgE or IgE-Fc to cell surface FcεRI. Titration experiments, together with molecular mass measurements of the Fcε3–4/sFcεRIα complex, reveal that Fcε3–4 binds only a single receptor molecule. This excludes the possibility that steric hindrance by Cε2 accounts for the unexpected stoichiometry. Received: 31 July 1996 / Accepted: 1 December 1996  相似文献   

12.
Recently determined crystal structures of the complex between immunoglobulin constant regions (Fc) and their Fc-respective receptors (FcR) have revealed the detailed molecular interactions of this receptor-ligand pair. Of particular interest is the contribution of a glycosylation at Asn(297) of the C(H)2 domain of IgG to receptor recognition. The carbohydrate moieties are found outside the receptor.Fc interface in all receptor.Fc complex structures. To understand the role of glycosylation in FcR recognition, the receptor affinities of a deglycosylated IgG1 and its Fc fragment were determined by solution binding studies using surface plasmon resonance. The removal of carbohydrates resulted in a non-detectable receptor binding to the Fc alone and a 15- to 20-fold reduction of the receptor binding to IgG1, suggesting that the carbohydrates are important in the function of the FcgammaRIII. Structurally, the carbohydrates attached to Asn(297) fill the cavity between the C(H)2 domains of Fc functioning equivalently as a hydrophobic core. This may stabilize a favorable lower hinge conformation for the receptor binding. The structure of the complex also revealed the dominance of the lower hinge region in receptor.Fc recognition. To evaluate the potential of designing small molecular ligands to inhibit the receptor function, four lower hinge peptides were investigated for their ability to bind to the receptor FcgammaRIII. These peptides bind specifically to FcgammaRIII with affinities 20- to 100-fold lower than IgG1 and are able to compete with Fc in receptor binding. The results of peptide binding illustrate new ways of designing therapeutic compounds to block Fc receptor activation.  相似文献   

13.
14.
Cellobiohydrolase from Melanocarpus albomyces (Cel7B) is a thermostable, single-module, cellulose-degrading enzyme. It has relatively low catalytic activity under normal temperatures, which allows structural studies of the binding of unmodified substrates to the native enzyme. In this study, we have determined the crystal structure of native Ma Cel7B free and in complex with three different cello-oligomers: cellobiose (Glc2), cellotriose (Glc3), and cellotetraose (Glc4), at high resolution (1.6–2.1 Å). In each case, four molecules were found in the asymmetric unit, which provided 12 different complex structures. The overall fold of the enzyme is characteristic of a glycoside hydrolase family 7 cellobiohydrolase, where the loops extending from the core β-sandwich structure form a long tunnel composed of multiple subsites for the binding of the glycosyl units of a cellulose chain. The catalytic residues at the reducing end of the tunnel are conserved, and the mechanism is expected to be retaining similarly to the other family 7 members. The oligosaccharides in different complex structures occupied different subsite sets, which partly overlapped and ranged from −5 to +2. In four cellotriose and one cellotetraose complex structures, the cello-oligosaccharide also spanned over the cleavage site (−1/+1). There were surprisingly large variations in the amino acid side chain conformations and in the positions of glycosyl units in the different cello-oligomer complexes, particularly at subsites near the catalytic site. However, in each complex structure, all glycosyl residues were in the chair (4C1) conformation. Implications in relation to the complex structures with respect to the reaction mechanism are discussed.  相似文献   

15.
《Life sciences》1995,57(15):1401-1410
PD 128907 [4a R, 10 b R-(+)-trans- 3, 4, 4a, 10 b - tetrahydro - 4- n-propy12 H,5H-[1] benzopyrano[4,3-b]1,4-oxazin-9-ol.], a selective dopamine (DA) D3 receptor agonist ligand exhibits about a 1000-fold selectivity for human D3 receptors (Ki, 1 nM) versus human D2 receptors (Ki, 1183 nM) and a 10000-fold selectivity versus human D4 receptors (Ki, 7000 nM) using [3H]spiperone as the radioligand in CHO-K1-cells. Studies with [3H]PD 128907, showed saturable, high affinity binding to human D3 receptors expressed in CHO-K1 cells (CHO-K1-D3) with an equilibrium dissociation constant (Kd) of 0.99 nM and a binding density (Bmax) of 475 fmol/mg protein. Under the same conditions, there was no significant specific binding in CHO-K1-cells expressing human D2 receptors (CHO-K1-D2). The rank order of potency for inhibition of [3H]PD 128907 binding with reference DA agents was consistent with reported values for D3 receptors. These results indicate that [3H]PD 128907 is a new, highly selective D3 receptor ligand with high specific activity, high specific binding and low non-specific binding and therefore should be useful for further characterizing the DA D3 receptors.  相似文献   

16.
Solute receptors (binding proteins) are indispensable components of canonical ATP-binding cassette importers in prokaryotes. Here, we report on the characterization and crystal structures in the closed and open conformations of AcbH, the solute receptor of the putative carbohydrate transporter AcbFG which is encoded in the acarbose (acarviosyl-1,4-maltose) biosynthetic gene cluster from Actinoplanes sp. SE50/110. Binding assays identified AcbH as a high-affinity monosaccharide-binding protein with a dissociation constant (Kd) for β-d-galactopyranose of 9.8 ± 1.0 nM. Neither galactose-containing di- and trisaccharides, such as lactose and raffinose, nor monosaccharides including d-galacturonic acid, l-arabinose, d-xylose and l-rhamnose competed with [14C]galactose for binding to AcbH. Moreover, AcbH does not bind d-glucose, which is a common property of all but one d-galactose-binding proteins characterized to date. Strikingly, determination of the X-ray structure revealed that AcbH is structurally homologous to maltose-binding proteins rather than to glucose-binding proteins. Two helices are inserted in the substrate-binding pocket, which reduces the cavity size and allows the exclusive binding of monosaccharides, specifically β-d-galactopyranose, in the 4C1 conformation. Site-directed mutagenesis of three residues from the binding pocket (Arg82, Asp361 and Arg362) that interact with the axially oriented O4-H hydroxyl of the bound galactopyranose and subsequent functional analysis indicated that these residues are crucial for galactose binding. To our knowledge, this is the first report of the tertiary structure of a solute receptor with exclusive affinity for β-d-galactopyranose. The putative role of a galactose import system in the context of acarbose metabolism in Actinoplanes sp. is discussed.  相似文献   

17.
Anion exchanger 1 (AE1 or band 3) is responsible for Cl-HCO3 exchange on erythrocyte membrane. Previously, we showed that band 3 is fixed in an inward-facing conformation by specific modification of His 834 with DEPC, resulting in a strong inhibition of its anion transport activity. To clarify the physiological role of His 834, we evaluated the sulfate transport activities of various band 3 mutants: different mutants at His 834 and alanine mutants of peripheral residues around 834 (Lys 829-Phe 836) in yeast cell membranes. The Km values of the His 834 mutants were 4-10 times higher than that of the wild type, while their Vmax values were barely lower than that of wild type. Meanwhile, the Km values of the peripheral alanine mutants were only slightly increased. These data suggest that His 834 is critically important for the efficient binding of sulfate anion, but not for the conformational change induced by substrate binding.  相似文献   

18.
Binding of the Fc domain of Immunoglobulin G (IgG) to Fcγ receptors on leukocytes can initiate a series of signaling events resulting in antibody-dependent cell-mediated cytotoxicity (ADCC) and other important immune responses. Fc domains lacking glycosylation at N297 have greatly diminished Fcγ receptor binding and lack the ability to initiate a robust ADCC response. Earlier structural studies of Fc domains with either full length or truncated N297 glycans led to the proposal that these glycans can stabilize an "open" Fc conformation recognized by Fcγ receptors. We determined the structure of an E. coli expressed, aglycosylated human Fc domain at 3.1 ? resolution and observed significant disorder in the C'E loop, a region critical for Fcγ receptor binding, as well as a decrease in distance between the C(H)2 domains relative to glycosylated Fc structures. However, comparison of the aglycosylated human Fc structure with enzymatically deglycosylated Fc structures revealed large differences in the relative orientations and distances between C(H)2 domains. To provide a better appreciation of the physiologically relevant conformation of the Fc domain in solution, we determined Radii of Gyration (R(g)) by small-angle X-ray scattering (SAXS) and found that the aglycosylated Fc displays a larger R(g) than glycosylated Fc, suggesting a more open C(H)2 orientation under these conditions. Moreover, the R(g) of aglycosylated Fc was reduced by mutations at the C(H)2-C(H)3 interface (E382V/M428I), which confer highly selective binding to FcγRI and novel biological activities.  相似文献   

19.
Platelet-derived growth factor receptor (PDGFR) β is a marker of stromal pericytes and fibroblasts and represents an interesting target for both diagnosis and therapy of solid tumors. A receptor-specific imaging agent would be a useful tool for further understanding the prognostic role of this receptor in vivo. Affibody molecules constitute a class of very small binding proteins that are highly suited for in vivo imaging applications and that can be selected to specifically recognize a desired target protein. Here we describe the isolation of PDGFRβ-specific Affibody molecules with subnanomolar affinity. First-generation Affibody molecules were generated from a large naive library using phage display selection. Subsequently, sequences from binders having a desired selectivity profile and competing with the natural ligand for binding were used in the design of an affinity maturation library, which was created using a single partially randomized oligonucleotide. From this second-generation library, Affibody molecules with a 10-fold improvement in affinity (Kd = 0.4-0.5 nM) for human PDGFRβ and a 4-fold improvement in affinity (Kd = 6-7 nM) for murine PDGFRβ were isolated and characterized. Complete reversible folding after heating to 90 °C, as demonstrated by circular dichroism analysis, supports tolerance to labeling conditions for molecular imaging. The binders were highly specific, as verified by dot blot showing staining reactivity only with human and murine PDGFRβ, but not with human PDGFRα, or a panel of control proteins including 16 abundant human serum proteins. The final binder recognized the native conformation of PDGFRβ expressed in murine NIH-3T3 fibroblasts and human AU565 cells, and inhibited ligand-induced receptor phosphorylation in PDGFRβ-transfected porcine aortic endothelial cells. The PDGFRβ-specific Affibody molecule also accumulated around tumoral blood vessels in a model of spontaneous insulinoma, confirming a potential for in vivo targeting.  相似文献   

20.
The determination of G protein-coupled receptor (GPCR) structures at atomic resolution has improved understanding of cellular signaling and will accelerate the development of new drug candidates. However, experimental structures still remain unavailable for a majority of the GPCR family. GPCR structures and their interactions with ligands can also be modelled computationally, but such predictions have limited accuracy. In this work, we explored if molecular dynamics (MD) simulations could be used to refine the accuracy of in silico models of receptor-ligand complexes that were submitted to a community-wide assessment of GPCR structure prediction (GPCR Dock). Two simulation protocols were used to refine 30 models of the D3 dopamine receptor (D3R) in complex with an antagonist. Close to 60 μs of simulation time was generated and the resulting MD refined models were compared to a D3R crystal structure. In the MD simulations, the receptor models generally drifted further away from the crystal structure conformation. However, MD refinement was able to improve the accuracy of the ligand binding mode. The best refinement protocol improved agreement with the experimentally observed ligand binding mode for a majority of the models. Receptor structures with improved virtual screening performance, which was assessed by molecular docking of ligands and decoys, could also be identified among the MD refined models. Application of weak restraints to the transmembrane helixes in the MD simulations further improved predictions of the ligand binding mode and second extracellular loop. These results provide guidelines for application of MD refinement in prediction of GPCR-ligand complexes and directions for further method development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号