首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biochemical and biophysical studies based upon crystal structures of both a mutant and wild-type lactose permease from Escherichia coli (LacY) in an inward-facing conformation have led to a model for the symport mechanism in which both sugar and H+ binding sites are alternatively accessible to both sides of the membrane. Previous findings indicate that the face of helix II with Asp68 is important for the conformational changes that occur during turnover. As shown here, replacement of Asp68 at the cytoplasmic end of helix II, particularly with Glu, abolishes active transport but the mutants retain the ability to bind galactopyranoside. In the x-ray structure, Asp68 and Lys131 (helix IV) lie within ∼ 4.2 Å of each other. Although a double mutant with Cys replacements at both position 68 and position 131 cross-links efficiently, single replacements for Lys131 exhibit very significant transport activity. Site-directed alkylation studies show that sugar binding by the Asp68 mutants causes closure of the cytoplasmic cavity, similar to wild-type LacY; however, strikingly, the probability of opening the periplasmic pathway upon sugar binding is markedly reduced. Taken together with results from previous mutagenesis and cross-linking studies, these findings lead to a model in which replacement of Asp68 blocks a conformational transition involving helices II and IV that is important for opening the periplasmic cavity. Evidence suggesting that movements of helices II and IV are coupled functionally with movements in the pseudo-symmetrically paired helices VIII and X is also presented.  相似文献   

2.
Previous N-ethylmaleimide-labeling studies show that ligand binding increases the reactivity of single-Cys mutants located predominantly on the periplasmic side of LacY and decreases reactivity of mutants located for the most part of the cytoplasmic side. Thus, sugar binding appears to induce opening of a periplasmic pathway with closing of the cytoplasmic cavity resulting in alternative access of the sugar-binding site to either side of the membrane. Here we describe the use of a fluorescent alkylating reagent that reproduces the previous observations with respect to sugar binding. We then show that generation of an H+ electrochemical gradient (Δμ¯H+, interior negative) increases the reactivity of single-Cys mutants on the periplasmic side of the sugar-binding site and in the putative hydrophilic pathway. The results suggest that Δμ¯H+, like sugar, acts to increase the probability of opening on the periplasmic side of LacY.  相似文献   

3.
We have examined the substrate selectivity of the melibiose permease (MelY) from Enterobacter cloacae in comparison with that of the lactose permease (LacY) from Escherichia coli. Both proteins catalyze active transport of lactose or melibiose with comparable affinity and capacity. However, MelY does not transport the analogue methyl-1-thio-β,d-galactopyranoside (TMG), which is a very efficient substrate in LacY. We show that MelY binds TMG and conserves Cys148 (helix V) as a TMG binding residue but fails to transport this ligand. Based on homology modeling, organization of the putative MelY sugar binding site is the same as that in LacY and residues irreplaceable for the symport mechanism are conserved. Moreover, only 15% of the residues where a single-Cys mutant is inactivated by site-directed alkylation differ in MelY. Using site-directed mutagenesis at these positions and engineered cross-homolog chimeras, we show that Val367, at the periplasmic end of transmembrane helix XI, contributes in defining the substrate selectivity profile. Replacement of Val367 with the MelY residue (Ala) leads to impairment of TMG uptake. Exchanging domains N6 and C6 between LacY and MelY also leads to impairment of TMG uptake. TMG uptake activity is restored by the re-introduction of a Val367 in the background of chimera N6(LacY)-C6(MelY). Much less prominent effects are found with the same mutants and chimeras for the transport of lactose or melibiose.  相似文献   

4.
Different amounts and various types of bis-dinuclear tetradentate molybdate complexes of D-erythro-L-manno-octose, D-erythro-L-gluco-octose, D-erythro-L-manno-octitol and D-erythro-L-gluco-octitol were characterized by 1H and 13C NMR spectroscopy in aqueous solutions. Detailed analysis of 1H-(1)H coupling constants and NOEs, together with chemical shifts, allowed characterization of the different isomers of these complexes.  相似文献   

5.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.  相似文献   

6.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed.  相似文献   

7.
The antigenic polysaccharide was obtained from the cell wall of Eubacterium saburreum strain T15 by trypsin digestion followed by gel permeation and ion-exchange chromatography. Its structure was determined using acid hydrolysis, methylation analysis, and 1D and 2D NMR spectroscopy. It contained L-threo-pent-2-ulose (Xul), D-fucose (Fuc), and D-glycero-D-galacto-heptose (Hep) in 2:3:3 ratio. Methylation analysis indicated an octasaccharide repeating-unit containing five branches. The 1H and 13C signals in NMR spectra of the sugar residues were assigned by COSY, HOHAHA, and HMQC 2D experiments, and the sequence of sugar residues in the repeating unit was determined by NOESY and HMBC experiments. The polysaccharide also contains two O-acetyl groups in the repeating unit, located on the Hep residue. The repeating structure can be written as: [see text for equation]. This is a novel structure in bacterial cell-wall polysaccharides from Gram-positive bacteria.  相似文献   

8.
6-O-(L-Tyrosylglycyl)- and 6-O-(L-tyrosylglycylglycyl)-D-glucopyranose were synthesized by condensation of the pentachlorophenyl esters of the respective di- and tripeptide with fully unprotected D-glucose. The intramolecular reactivity of the sugar conjugates was studied in pyridine-acetic acid and in dry methanol, at various temperatures and for various incubation times. The composition of the incubation mixtures was monitored by a reversed-phase HPLC method that permits simultaneous analysis of the disappearance of the starting material and the appearance of rearrangement and degradation products. To determine the influence of esterification of the peptide carboxy group on its amino group reactivity, parallel experiments were done in which free peptides were, under identical reaction conditions, incubated with D-glucose (molar ratios 1:1 and 1:5). Depending on the starting compound, different types of Amadori products (cyclic and bicyclic form), methyl ester of peptides, and Tyr-Gly-diketopiperazine were obtained.  相似文献   

9.
Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into d-glycero-d-manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.  相似文献   

10.
Following a report of variations in the lipopolysaccharide (LPS) structure of Yersinia pestis at mammalian (37 degrees C) and flea (25 degrees C) temperatures, a number of changes to the LPS structure were observed when the bacterium was cultivated at a temperature of winter-hibernating rodents (6 degrees C). In addition to one of the known Y. pestis LPS types, LPS of a new type was isolated from Y. pestis KM218 grown at 6 degrees C. The core of the latter differs in: (i) replacement of terminal galactose with terminal d-glycero-d-manno-heptose; (ii) phosphorylation of terminal oct-2-ulosonic acid with phosphoethanolamine; (iii) a lower content of GlcNAc, and; (iv) the absence of glycine; lipid A differs in the lack of any 4-amino-4-deoxyarabinose and presumably partial (di)oxygenation of a fatty acid(s). The data obtained suggest that cold temperature switches on an alternative mechanism of control of the synthesis of Y. pestis LPS.  相似文献   

11.
DGalactofuranose is a widespread component of cell wall polysaccharides in bacteria, protozoa and fungi, but is totally absent in mammals. Importantly, galactofuranose is a key constituent of major cell envelope polysaccharides in pathogenic mycobacteria. In this respect, galactofuranose-based glycoconjugates are interesting target molecules for drug design. O-Glycosidases and notably beta-D-galactofuranosidases could be useful tools for the chemoenzymatic synthesis of galactofuranosides, but to date no studies of this type have been reported. Here we report the use of a GH 51 alpha-l-arabinofuranosidase for the synthesis of beta-D-galactofuranosides. We have demonstrated that this enzyme can catalyse both the autocondensation of p-nitrophenyl-beta-D-galactofuranoside and the transgalactofuranosylation of benzyl alpha-D-xylopyranoside, forming p-nitrophenyl beta-D-galactofuranosyl-(1-->2)-beta-D-galactofuranoside and benzyl beta-D-galactofuranosyl-(1-->2)-alpha-D-xylopyranoside, respectively. Both reactions were very regiospecific and the reaction involving benzyl alpha-D-xylopyranoside afforded very high yields (74.8%) of the major product. To our knowledge, this demonstration of chemoenzymatic synthesis of galactofuranosides constitutes the very first use of an O-glycosidase for the synthesis of galactofuranosides.  相似文献   

12.
Okuda S  Watanabe S  Tokuda H 《FEBS letters》2008,582(15):2247-2251
The structures of a lipoprotein carrier, LolA, and a lipoprotein receptor, LolB, are similar except for an extra C-terminal loop containing a 3(10) helix and beta-strand 12 in LolA. Lipoprotein release was significantly reduced when beta-12 was deleted. Deletion of the 3(10) helix also inhibited the lipoprotein release. Furthermore, lipoproteins were non-specifically localized to membranes when LolA lacked the 3(10) helix. Thus, the membrane localization of lipoproteins with the LolA derivative lacking the 3(10) helix was independent of LolB whereas LolB was essential for the outer membrane localization of lipoproteins with the wild-type LolA.  相似文献   

13.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

14.
Somatic angiotensin I-converting enzyme (s-ACE) plays a central role in blood pressure regulation and has been the target of most antihypertensive drugs. A displacement isothermal titration calorimetry method has been used to accurately determine the binding constant of three strong s-ACE inhibitors. Under the experimental conditions studied in this work, the relative potency of the inhibitors was determined to be enalaprilat>lisinopril>captopril. We analyze the thermodynamic behaviour of the binding process using the new structural information provided by the ACE structures, as well as the conformational changes that occur upon binding.  相似文献   

15.
Lim YR  Yeom SJ  Kim YS  Oh DK 《Bioresource technology》2011,102(5):4277-4280
The optimum conditions for the production of l-arabinose from debranched arabinan were determined to be pH 6.5, 75 °C, 20 g l−1 debranched arabinan, 42 U ml−1 endo-1,5-α-l-arabinanase, and 14 U ml−1 α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus and the conditions for sugar beet arabinan were pH 6.0, 75 °C, 20 g l−1 sugar beet arabinan, 3 U ml−1 endo-1,5-α-l-arabinanase, and 24 U ml−1 α-l-arabinofuranosidase. Under the optimum conditions, 16 g l−1l-arabinose was obtained from 20 g l−1 debranched arabinan or sugar beet arabinan after 120 min, with a hydrolysis yield of 80% and a productivity of 8 g l−1 h−1. This is the first reported trial for the production of l-arabinose from the hemicellulose arabinan by the combined use of endo- and exo-arabinanases.  相似文献   

16.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

17.
Octopine dehydrogenase [N2-(d-1-carboxyethyl)-l-arginine:NAD+ oxidoreductase] (OcDH) from the adductor muscle of the great scallop Pecten maximus catalyzes the reductive condensation of l-arginine and pyruvate to octopine during escape swimming. This enzyme, which is a prototype of opine dehydrogenases (OpDHs), oxidizes glycolytically born NADH to NAD+, thus sustaining anaerobic ATP provision during short periods of strenuous muscular activity. In contrast to some other OpDHs, OcDH uses only l-arginine as the amino acid substrate. Here, we report the crystal structures of OcDH in complex with NADH and the binary complexes NADH/l-arginine and NADH/pyruvate, providing detailed information about the principles of substrate recognition, ligand binding and the reaction mechanism. OcDH binds its substrates through a combination of electrostatic forces and size selection, which guarantees that OcDH catalysis proceeds with substrate selectivity and stereoselectivity, giving rise to a second chiral center and exploiting a “molecular ruler” mechanism.  相似文献   

18.
The pathway of product release from the R state of aspartate transcarbamoylase (ATCase; EC 2.1.3.2, aspartate carbamoyltransferase) has been determined here by solving the crystal structure of Escherichia coli ATCase locked in the R quaternary structure by specific introduction of disulfide bonds. ATCase displays ordered substrate binding and product release, remaining in the R state until substrates are exhausted. The structure reported here represents ATCase in the R state bound to the final product molecule, phosphate. This structure has been difficult to obtain previously because the enzyme relaxes back to the T state after the substrates are exhausted. Hence, cocrystallizing the wild-type enzyme with phosphate results in a T-state structure. In this structure of the enzyme trapped in the R state with specific disulfide bonds, we observe two phosphate molecules per active site. The position of the first phosphate corresponds to the position of the phosphate of carbamoyl phosphate (CP) and the position of the phosphonate of N-phosphonacetyl-l-aspartate. However, the second, more weakly bound phosphate is bound in a positively charged pocket that is more accessible to the surface than the other phosphate. The second phosphate appears to be on the path that phosphate would have to take to exit the active site. Our results suggest that phosphate dissociation and CP binding can occur simultaneously and that the dissociation of phosphate may actually promote the binding of CP for more efficient catalysis.  相似文献   

19.
5-Thio-D-arabinopyranose (5) and 5-thio-D-xylopyranose (10) were synthesized from the corresponding D-pentono-1,4-lactones. After regioselective bromination at C-5, transformation into 5-S-acetyl-5-thio derivatives, reduction into lactols and deprotection afforded the title compounds in 49 and 42% overall yield, respectively.  相似文献   

20.
Mills SJ  Liu C  Potter BV 《Carbohydrate research》2002,337(20):1795-1801
The preparation of D- and L-myo-inositol 2,4,5-trisphosphate is described, together with the phosphorothioate counterparts. The known chiral diols D- and L-1,4-di-O-benzyl-5,6-bis-O-p-methoxybenzyl-myo-inositol were regioselectively protected at the 3-position using a benzyl group via a 2,3-O-stannylene acetal. Removal of the p-methoxybenzyl groups of each enantiomer gave D- and L-1,3,6-tri-O-benzyl-myo-inositol. Phosphitylation with bis(benzyloxy)diisoproplyaminophosphine and 1H-tetrazole gave the trisphosphite intermediate for each enantiomer. Oxidation with 3-chloroperoxybenzoic acid gave the fully protected D- and L-myo-inositol 2,4,5-trisphosphates. Sulphoxidation of the D- and L-2,4,5-trisphosphite intermediates gave the fully protected D- and L-myo-inositol 2,4,5-trisphosphorothioate compounds. The fully protected trisphosphates were deblocked using hydrogenolysis and the phosphorothioates were deprotected using sodium in liquid ammonia. The individual compounds were then purified using ion exchange chromatography to afford pure D- and L-myo-inositol 2,4,5-trisphosphates together with the corresponding phosphorothioates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号