首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrin protein is the product of the MEFV gene, mutations in which cause manifestation of familial Mediterranean fever (FMF). Functions of pyrin are not completely clear. The secondary structure of the pyrin is represented with four domains and two motifs. Mutations p.M680I, p.M694V, p.M694I, p.K695R, p.V726A, and p.A744S, which are located in the B30.2 domain of pyrin protein, are responsible for manifestation of the most common and severe forms of FMF. All the domains and the motifs of pyrin, are directly or indirectly, involved in the protein–protein interaction with proteins of apoptosis and regulate the cascade of inflammatory reactions, which is impaired due to pyrin mutations. It is well known, that malfunction of the pyrin‐caspase‐1 complex is the main reason of inflammation during FMF. Complete tertiary structure of pyrin and the effects of mutations in it are experimentally not studied yet. The aim of this study was to identify possible effects of the abovementioned mutations in the B30.2 domain tertiary structure and to determine their potential consequences in formation of the B30.2‐caspase‐1 complex. Using in silico methods, it was found, that these mutations led to structural rearrangements in B30.2 domain tertiary structure, causing shifts of binding sites and altering the interaction energy between B30.2 and caspase‐1.  相似文献   

2.
Familial Mediterranean fever (FMF) is an autosomal, recessive disease, attributed to mutations in MEFV gene encoding pyrin, which is characterized by recurrent, acute and self-limiting attacks of fever as well as an increased neutrophil and monocyte apoptosis. Most disease-associated mutations in MEFV gene reside on the C-terminal PRYSPRY (B30.2) domain of pyrin, an area found to interact with the pro-apoptotic protein Siva. Because apoptotic events may be contributing to endogenous inflammation we hypothesized that mutations in pyrin may affect Siva-mediated apoptosis. The confirmation of this hypothesis would be of a great biological significance since it would be demonstrated a connection between apoptosis and inflammation. We used homology modeling to construct a 3-D model of Siva protein and the constructed model of Siva defined structural elements with potential of binding other proteins to induce apoptosis. Given that Siva protein binds pyrin as shown by transfection and immunoprecipitation experiments, apoptosis was assessed by FACS and Western blotting. No differences in rates of apoptosis in myeloid cells (THP-1) upon transfection with either wt pyrin or mutant forms of pyrin were found. Patients with FMF did not display any mutations in the Siva-1 (full length) gene. Siva-1 was not linked to pyrin in the major predicted FMF gene network constructed using a literature-curated gene signature for FMF. These results suggest that Siva-mediated unprovoked apoptosis is not likely to be involved in the pathogenesis of FMF.  相似文献   

3.
The B30.2 domain is a conserved region of around 170 amino acids associated with several different protein domains, including the immunoglobulin folds of butyrophilin and the RING finger domain of ret finger protein. We recently reported several novel members of this family as well as previously undescribed protein families possessing the B30.2 domain. Many proteins have subsequently been found to possess this domain, including pyrin/marenostrin and the midline 1 (MID1) protein. Mutations in the B30.2 domain of pyrin/marenostrin are implicated in familial Mediterranean fever, and partial loss of the B30.2 domain of MID1 is responsible for Opitz G/BBB syndrome, characterized by developmental midline defects. In this study, we scrutinized the available sequence data bases for the identification of novel B30.2 domain proteins using highly sensitive database-searching tools. In addition, we discuss the chromosomal localization of genes in the B30.2 family, since the encoded proteins are likely to be involved in other forms of periodic fever, autoimmune, and genetic diseases.   相似文献   

4.
5.
Woo JS  Imm JH  Min CK  Kim KJ  Cha SS  Oh BH 《The EMBO journal》2006,25(6):1353-1363
The B30.2/SPRY domain is present in approximately 700 eukaryotic (approximately 150 human) proteins, including medically important proteins such as TRIM5alpha and Pyrin. Nonetheless, the functional role of this modular domain remained unclear. Here, we report the crystal structure of an SPRY-SOCS box family protein GUSTAVUS in complex with Elongins B and C, revealing a highly distorted two-layered beta-sandwich core structure of its B30.2/SPRY domain. Ensuing studies identified one end of the beta-sandwich as the surface interacting with an RNA helicase VASA with a 40 nM dissociation constant. The sequence variation in TRIM5alpha responsible for HIV-1 restriction and most of the mutations in Pyrin causing familial Mediterranean fever map on this surface, implicating the corresponding region in many B30.2/SPRY domains as the ligand-binding site. The amino acids lining the binding surface are highly variable among the B30.2/SPRY domains, suggesting that these domains are protein-interacting modules, which recognize a specific individual partner protein rather than a consensus sequence motif.  相似文献   

6.
7.
Penicillium marneffei is a dimorphic, pathogenic fungus in Southeast Asia that mostly afflicts immunocompromised individuals. As the only dimorphic member of the genus, it goes through a phase transition from a mold to yeast form, which is believed to be a requisite for its pathogenicity. Mp1p, a cell wall antigenic mannoprotein existing widely in yeast, hyphae, and conidia of the fungus, plays a vital role in host immune response during infection. To understand the function of Mp1p, we have determined the x-ray crystal structure of its ligand binding domain 2 (LBD2) to 1.3 Å. The structure reveals a dimer between the two molecules. The dimer interface forms a ligand binding cavity, in which electron density was observed for a palmitic acid molecule interacting with LBD2 indirectly through hydrogen bonding networks via two structural water molecules. Isothermal titration calorimetry experiments measured the ligand binding affinity (Kd) of Mp1p at the micromolar level. Mutations of ligand-binding residues, namely S313A and S332A, resulted in a 9-fold suppression of ligand binding affinity. Analytical ultracentrifugation assays demonstrated that both LBD2 and Mp1p are mostly monomeric in vitro, no matter with or without ligand, and our dimeric crystal structure of LBD2 might be the result of crystal packing. Based on the conformation of the ligand-binding pocket in the dimer structure, a model for the closed, monomeric form of LBD2 is proposed. Further structural analysis indicated the biological importance of fatty acid binding of Mp1p for the survival and pathogenicity of the conditional pathogen.  相似文献   

8.
9.
Ionotropic glutamate receptors (iGluRs) are involved in excitatory signal transmission throughout the central nervous system and their malfunction is associated with various health disorders. GluK3 is a subunit of iGluRs, belonging to the subfamily of kainate receptors (GluK1–5). Several crystal structures of GluK1 and GluK2 ligand binding domains have been determined in complex with agonists and antagonists. However, little is known about the molecular mechanisms underlying GluK3 ligand binding properties and no compounds displaying reasonable selectivity towards GluK3 are available today. Here, we present the first X-ray crystal structure of the ligand binding domain of GluK3 in complex with glutamate, determined to 1.6 Å resolution. The structure reveals a conserved glutamate binding mode, characteristic for iGluRs, and a water molecule network in the glutamate binding site similar to that seen in GluK1. In GluK3, a slightly lower degree of domain closure around glutamate is observed compared to most other kainate receptor structures with glutamate. The volume of the GluK3 glutamate binding cavity was found to be of intermediate size between those of GluK1 and GluK2. The residues in GluK3 contributing to the subfamily differences in the binding sites are primarily: Thr520, Ala691, Asn722, Leu736 and Thr742. The GluK3 ligand binding domain seems to be less stabilized through interlobe interactions than GluK1 and this may contribute to the faster desensitization kinetics of GluK3.  相似文献   

10.
ActR-IIA, ActR-IIB, and BMPR-II are low-affinity type II receptors that bind bone morphogenetic proteins (BMPs) in the same overall manner. The binding of BMPs by ActR-IIs has been analyzed structurally and functionally, but no detailed analysis of BMPR-II has been reported. The objective of this study was to determine ligand-binding epitopes and specificity determinants in two regions, the hydrophobic patch and the A-loop of the BMPR-II extracellular domain (ECD). A series of alanine-substituted variants was generated using a recently published X-ray structure of the unliganded form of the ovine BMPR-II ECD as a guide. These variants were characterized using one-dimensional NMR and functional activity assays with BMP-2, BMP-7 and GDF-5 as ligands. The results showed that alanine substitutions of conserved residues W85 and Y113 within the hydrophobic patch of the ECD differentially perturbed BMP ligand binding without disrupting receptor folding, suggesting that they are critical determinants for ligand binding and ligand specificity. Our results further revealed that the nonconserved residue L69 in the hydrophobic patch contributes to ligand-binding activity and specificity. Mutations of several residues within the A-loop resulted in minimal effects on the binding of the different BMP ligands. Overall, these observations identify several amino acid residues that play different roles in BMPR-II and ActR-II and thereby enable BMPR-II and ActR-IIs to bind different subclasses of BMP ligands.  相似文献   

11.
12.
Low molecular weight juvenile hormone binding proteins (JHBPs) are specific carriers of juvenile hormone (JH) in the hemolymph of butterflies and moths. As hormonal signal transmitters, these proteins exert a profound effect on insect development. The crystal structure of JHBP from Galleria mellonella shows an unusual fold consisting of a long α-helix wrapped in a highly curved antiparallel β-sheet. JHBP structurally resembles the folding pattern found in tandem repeats in some mammalian lipid-binding proteins, with similar organization of one cavity and a disulfide bond between the long helix and the β-sheet. JHBP reveals, therefore, an archetypal fold used by nature for hydrophobic ligand binding. The JHBP molecule possesses two hydrophobic cavities. Several lines of experimental evidence conclusively indicate that JHBP binds JH in only one cavity, close to the N- and C-termini, and that this binding induces a structural change. The second cavity, located at the opposite end of the molecule, could bind another ligand.  相似文献   

13.
14.
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.  相似文献   

15.
16.
BchU plays a role in bacteriochlorophyll c biosynthesis by catalyzing methylation at the C-20 position of cyclic tetrapyrrole chlorin using S-adenosylmethionine (SAM) as a methyl source. This methylation causes red-shifts of the electronic absorption spectrum of the light-harvesting pigment, allowing green photosynthetic bacteria to adapt to low-light environments. We have determined the crystal structures of BchU and its complex with S-adenosylhomocysteine (SAH). BchU forms a dimer and each subunit consists of two domains, an N-terminal domain and a C-terminal domain. Dimerization occurs through interactions between the N-terminal domains and the residues responsible for the catalytic reaction are in the C-terminal domain. The binding site of SAH is located in a large cavity between the two domains, where SAH is specifically recognized by many hydrogen bonds and a salt-bridge. The electron density map of BchU in complex with an analog of bacteriochlorophyll c located its central metal near the SAH-binding site, but the tetrapyrrole ring was invisible, suggesting that binding of the ring to BchU is loose and/or occupancy of the ring is low. It is likely that His290 acts as a ligand for the central metal of the substrate. The orientation of the substrate was predicted by simulation, and allows us to propose a mechanism for the BchU directed methylation: the strictly conserved Tyr246 residue acts catalytically in the direct transfer of the methyl group from SAM to the substrate through an S(N)2-like mechanism.  相似文献   

17.
Cubilin, the receptor for intrinsic factor-vitamin B12, is a novel type of high molecular weight receptor consisting of a 27 CUB (complement components C1r/C1s, Uegf, and bone morphogenic protein-1) domain cluster preceded by 8 epidermal growth factor repeats and a short N-terminal sequence. In addition to binding the vitamin B12-carrier complex, cubilin also binds receptor-associated protein. To delineate the structures for membrane association and ligand binding we established a panel of stable transfected Chinese hamster ovary cells expressing overlapping segments of rat cubilin. Analysis of conditioned media and cell extracts of transfected cells revealed that the N-terminal cubilin region conveys membrane association. Helical plotting of this region demonstrated a conserved amphipathic helix pattern (Lys74-Glu109) as a candidate site for hydrophobic interactions. Ligand affinity chromatography and surface plasmon resonance analysis of the secreted cubilin fragments showed ligand binding in the CUB domain region. Further dissection of binding-active fragments localized the binding site for intrinsic factor-vitamin B12 to CUB domains 5-8 and a receptor-associated protein-binding site to CUB domains 13-14. In conclusion, the N-terminal cubilin region seems crucial for membrane association, whereas the CUB domain cluster harbors distinct sites for ligand binding.  相似文献   

18.
Inflammasomes are macromolecular complexes that mediate inflammatory and cell death responses to pathogens and cellular stress signals. Dysregulated inflammasome activation is associated with autoinflammatory syndromes and several common diseases. During inflammasome assembly, oligomerized cytosolic pattern recognition receptors recruit procaspase-1 and procaspase-8 via the adaptor protein ASC. Inflammasome assembly is mediated by pyrin domains (PYDs) and caspase recruitment domains, which are protein interaction domains of the death fold superfamily. However, the molecular details of their interactions are poorly understood. We have studied the interaction between ASC and pyrin PYDs that mediates ASC recruitment to the pyrin inflammasome, which is implicated in the pathogenesis of familial Mediterranean fever. We demonstrate that both the ASC and pyrin PYDs have multifaceted binding modes, involving three sites on pyrin PYD and two sites on ASC PYD. Molecular docking of pyrin-ASC PYD complexes showed that pyrin PYD can simultaneously interact with up to three ASC PYDs. Furthermore, ASC PYD can self-associate and interact with pyrin, consistent with previous reports that pyrin promotes ASC clustering to form a proinflammatory complex. Finally, the effects of familial Mediterranean fever-associated mutations, R42W and A89T, on structural and functional properties of pyrin PYD were investigated. The R42W mutation had a significant effect on structure and increased stability. Although the R42W mutant exhibited reduced interaction with ASC, it also bound less to the pyrin B-box domain responsible for autoinhibition and hence may be constitutively active. Our data give new insights into the binding modes of PYDs and inflammasome architecture.  相似文献   

19.
The hydrophobic cavity of lipocalin-type prostaglandin D synthase (L-PGDS) has been suggested to accommodate various lipophilic ligands through hydrophobic effects, but its energetic origin remains unknown. We characterized 18 buffer-independent binding systems between human L-PGDS and lipophilic ligands using isothermal titration calorimetry. Although the classical hydrophobic effect was mostly detected, all complex formations were driven by favorable enthalpic gains. Gibbs energy changes strongly correlated with the number of hydrogen bond acceptors of ligand. Thus, the broad binding capability of L-PGDS for ligands should be viewed as hydrophilic interactions delicately tuned by enthalpy–entropy compensation using combined effects of hydrophilic and hydrophobic interactions.  相似文献   

20.
Mutations in pyrin cause the autoinflammatory disorder familial Mediterranean fever (FMF), a syndrome characterized by sporadic and unpredictable attacks of fever and localized severe pain. Currently, it is not clear how attacks are triggered, nor why they spontaneously resolve after 2 or 3 days. In fact, the cellular function of the pyrin protein and the molecular underpinnings of its malfunction in FMF have so far eluded clear definition. The identification of pyrin-interacting proteins has the potential to increase our understanding of the cellular networks in which pyrin functions. Previous reports have established that pyrin interacts with the apoptotic protein ASC, the cytoskeletal adaptor protein PSTPIP1, the inflammatory caspase, Caspase-1 and certain forms of the cytosolic anchoring protein 14-3-3. Here, we report that pyrin also interacts with Siva, a pro-apoptotic protein first identified for its interaction with the cytosolic tail of CD27, a TNF family receptor. The interaction between pyrin and Siva involves the C-terminal B30.2/rfp/SRPY domain of pyrin and exon 1 of Siva. We show that Siva and pyrin are indeed co-expressed in human neutrophils, monocytes, and synovial cells. Furthermore, using a novel protein/protein interaction assay, we demonstrate that pyrin can recruit Siva to ASC specks, establishing a potential platform for intersection of ASC and Siva function. Finally, we show that pyrin modulates the apoptotic response to oxidative stress mediated by Siva. Thus, the Siva-pyrin interaction may be a potential target for future therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号