首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycoside hydrolase family GH85 is a family of endo-β-N-acetylglucosaminidases that is responsible for the hydrolysis of β-1,4 linkage in the N,N-diacetylchitobiose core of N-linked glycans. The endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) is of particular interest, given its increasing use for the chemoenzymatic synthesis of bespoke N-glycans using N-glycan oxazolines as glycosyl donors. The E173Q variant of Endo-A is especially attractive for synthesis, as it is hydrolytically impaired but still able to catalyze N-glycan synthesis by transglycosylation using activated oxazoline donors. Here we present the three-dimensional structure of the A. protophormiae Endo-A E173Q variant, solved by multiple-wavelength anomalous scattering methods and refined at 1.8 Å resolution. The structure reveals that GH85 enzymes display a trimodular architecture in which a (β/α)8 catalytic domain occurs with two ancillary β-sheet modules. The active centre is fully consistent with the known neighboring-group catalytic mechanism in which E173 acts as the catalytic acid/base for reaction via an oxazoline intermediate. Of note is the presence of an asparagine in the active centre, in a position likely to interact with the acetyl NH group that, in all other known families of glycosidase using this mechanism, is an aspartate or glutamate residue. The substrate-binding surface reveals an open topography, consistent with the ability to accept a large range of glycoprotein substrates and the ability to transglycosylate other acceptors. The three-dimensional structure of this important biocatalyst reveals that residues implicated in the enhancement of transglycosylation and synthetic capacity are proximal to the active centre, where they may act to favor binding of acceptor substrates.  相似文献   

2.
We report the molecular cloning and characterization of two novel β-N-acetylhexosaminidases (β-HEX, EC 3.2.1.52) from Paenibacillus sp. strain TS12. The two β-HEXs (Hex1 and Hex2) were 70% identical in primary structure, and the N-terminal region of both enzymes showed significant similarity with β-HEXs belonging to glycoside hydrolase family 20 (GH20). Interestingly, however, the C-terminal region of Hex1 and Hex2 shared no sequence similarity with the GH20 β-HEXs or other known proteins. Both recombinant enzymes, expressed in Escherichia coli BL21(DE3), hydrolyzed the β-N-acetylhexosamine linkage of chitooligosaccharides and glycosphingolipids such as asialo GM2 and Gb4Cer in the absence of detergent. However, the enzyme was not able to hydrolyze GM2 ganglioside in the presence or in the absence of detergent. We determined three crystal structures of Hex1; the Hex1 deletion mutant Hex1-ΔC at a resolution of 1.8 Å; Hex1-ΔC in complex with β-N-acetylglucosamine at 1.6 Å; and Hex1-ΔC in complex with β-N-acetylgalactosamine at 1.9 Å. We made a docking model of Hex1-ΔC with GM2 oligosaccharide, revealing that the sialic acid residue of GM2 could hinder access of the substrate to the active site cavity. This is the first report describing the molecular cloning, characterization and X-ray structure of a procaryotic β-HEX capable of hydrolyzing glycosphingolipids.  相似文献   

3.
An isopullulanase (IPU) from Aspergillus niger ATCC9642 hydrolyzes α-1,4-glucosidic linkages of pullulan to produce isopanose. Although IPU does not hydrolyze dextran, it is classified into glycoside hydrolase family 49 (GH49), major members of which are dextran-hydrolyzing enzymes. IPU is highly glycosylated, making it difficult to obtain its crystal. We used endoglycosidase Hf to cleave the N-linked oligosaccharides of IPU, and we here determined the unliganded and isopanose-complexed forms of IPU, both solved at 1.7-Å resolution. IPU is composed of domains N and C joined by a short linker, with electron density maps for 11 or 12 N-acetylglucosamine residues per molecule. Domain N consists of 13 β-strands and forms a β-sandwich. Domain C, where the active site is located, forms a right-handed β-helix, and the lengths of the pitches of each coil of the β-helix are similar to those of GH49 dextranase and GH28 polygalacturonase. The entire structure of IPU resembles that of a GH49 enzyme, Penicillium minioluteum dextranase (Dex49A), despite a difference in substrate specificity. Compared with the active sites of IPU and Dex49A, the amino acid residues participating in subsites + 2 and + 3 are not conserved, and the glucose residues of isopanose bound to IPU completely differ in orientation from the corresponding glucose residues of isomaltose bound to Dex49A. The shape of the catalytic cleft characterized by the seventh coil of the β-helix and a loop from domain N appears to be critical in determining the specificity of IPU for pullulan.  相似文献   

4.
β-Alanine synthase (βAS) is the third enzyme in the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of the nucleotide bases uracil and thymine in higher organisms. It catalyzes the hydrolysis of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyrate to the corresponding β-amino acids. βASs are grouped into two phylogenetically unrelated subfamilies, a general eukaryote one and a fungal one. To reveal the molecular architecture and understand the catalytic mechanism of the general eukaryote βAS subfamily, we determined the crystal structure of Drosophila melanogaster βAS to 2.8 Å resolution. It shows a homooctameric assembly of the enzyme in the shape of a left-handed helical turn, in which tightly packed dimeric units are related by 2-fold symmetry. Such an assembly would allow formation of higher oligomers by attachment of additional dimers on both ends. The subunit has a nitrilase-like fold and consists of a central β-sandwich with a layer of α-helices packed against both sides. However, the core fold of the nitrilase superfamily enzymes is extended in D. melanogaster βAS by addition of several secondary structure elements at the N-terminus. The active site can be accessed from the solvent by a narrow channel and contains the triad of catalytic residues (Cys, Glu, and Lys) conserved in nitrilase-like enzymes.  相似文献   

5.
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived ω-aminoaldehydes to the corresponding ω-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with β-nicotinamide adenine dinucleotide (NAD+) at 2.4 and 2.15 Å resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD+ as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD+ binding site. While the NAD+ binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into γ-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, β-alanine betaine and γ-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.  相似文献   

6.
Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) is an enzyme in the branched-chain amino acid biosynthesis pathway where it catalyzes the conversion of 2-acetolactate into (2R)-2,3-dihydroxy-3-isovalerate or the conversion of 2-aceto-2-hydroxybutyrate into (2R,3R)-2,3-dihydroxy-3-methylvalerate. KARI catalyzes two reactions—alkyl migration and reduction—and requires Mg2+ and NADPH for activity. To date, the only reported structures for a plant KARI are those of the spinach enzyme-Mn2+-(phospho)ADP ribose-(2R,3R)-2,3-dihydroxy-3-methylvalerate complex and the spinach KARI-Mg2+-NADPH-N-hydroxy-N-isopropyloxamate complex, where N-hydroxy-N-isopropyloxamate is a predicted transition-state analog. These studies demonstrated that the enzyme consists of two domains, N-domain and C-domain, with the active site at the interface of these domains. Here, we have determined the structures of the rice KARI-Mg2+ and rice KARI-Mg2+-NADPH complexes to 1.55 Å and 2.80 Å resolutions, respectively. In comparing the structures of all the complexes, several differences are observed. Firstly, the N-domain is rotated up to 15° relative to the C-domain, expanding the active site by up to 4 Å. Secondly, an α-helix in the C-domain that includes residues V510-T519 and forms part of the active site moves by ∼ 3.9 Å upon binding of NADPH. Thirdly, the 15 C-terminal amino acid residues in the rice KARI-Mg2+ complex are disordered. In the rice KARI-Mg2+-NADPH complex and the spinach KARI structures, many of the 15 residues bind to NADPH and the N-domain and cover the active site. Fourthly, the location of the metal ions within the active site can vary by up to 2.7 Å. The new structures allow us to propose that an induced-fit mechanism operates to (i) allow substrate to enter the active site, (ii) close over the active site during catalysis, and (iii) open the active site to facilitate product release.  相似文献   

7.
Streptococcus pneumoniae is an important human pathogen that causes a range of disease states. Sialidases are important bacterial virulence factors. There are three pneumococcal sialidases: NanA, NanB, and NanC. NanC is an unusual sialidase in that its primary reaction product is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en, also known as DANA), a nonspecific hydrolytic sialidase inhibitor. The production of Neu5Ac2en from α2–3-linked sialosides by the catalytic domain is confirmed within a crystal structure. A covalent complex with 3-fluoro-β-N-acetylneuraminic acid is also presented, suggesting a common mechanism with other sialidases up to the final step of product formation. A conformation change in an active site hydrophobic loop on ligand binding constricts the entrance to the active site. In addition, the distance between the catalytic acid/base (Asp-315) and the ligand anomeric carbon is unusually short. These features facilitate a novel sialidase reaction in which the final step of product formation is direct abstraction of the C3 proton by the active site aspartic acid, forming Neu5Ac2en. NanC also possesses a carbohydrate-binding module, which is shown to bind α2–3- and α2–6-linked sialosides, as well as N-acetylneuraminic acid, which is captured in the crystal structure following hydration of Neu5Ac2en by NanC. Overall, the pneumococcal sialidases show remarkable mechanistic diversity while maintaining a common structural scaffold.  相似文献   

8.
Galectins form a large family of β-galactoside-binding proteins in metazoa and fungi. This report presents a comparative study of the functions of potential galectin genes found in the genome database of Caenorhabditis elegans. We isolated full-length cDNAs of eight potential galectin genes (lec-25 and 811) from a λZAP cDNA library. Among them, lec-2–5 were found to encode 31–35-kDa polypeptides containing two carbohydrate-recognition domains similar to the previously characterized lec-1, whereas lec-8–11 were found to encode 16–27-kDa polypeptides containing a single carbohydrate-recognition domain and a C-terminal tail of unknown function. Recombinant proteins corresponding to lec-1–4, -6, and 810 were expressed in Escherichia coli, and their sugar-binding properties were assessed. Analysis using affinity adsorbents with various β-galactosides, i.e., N-acetyllactosamine (Galβ1-4GlcNAc), lacto-N-neotetraose (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and asialofetuin, demonstrated that LEC-1–4, -6, and -10 have a significant affinity for β-galactosides, while the others have a relatively lower affinity. These results indicate that the integrity of key amino acid residues responsible for recognition of lactose (Galβ1-4Glc) or N-acetyllactosamine in vertebrate galectins is also required in C. elegans galectins. However, analysis of their fine oligosaccharide-binding properties by frontal affinity chromatography suggests their divergence towards more specialized functions.  相似文献   

9.
Katarína Kolenová 《FEBS letters》2010,584(18):4063-4068
α-Glucuronidases of glycoside hydrolase family 115 of the xylose-fermenting yeast Pichia stipitis and wood-destroying fungus Schizophyllum commune liberate 4-O-methyl-d-glucuronic acid residues from aldouronic acids and glucuronoxylan. The specific activities of both enzymes depended on polymerization degree of the acidic xylooligosaccharides and were inhibited by linear β-1,4-xylooligosaccharides. These results suggest interaction of the enzyme with several xylopyranosyl residues of the xylan main chain. Using 1H NMR spectroscopy and reduced aldopentaouronic acid (MeGlcA3Xyl4-ol) as a substrate, it was found that both enzymes are inverting glycoside hydrolases releasing 4-O-methyl-d-glucuronic acid (MeGlcA) as its β-anomer.  相似文献   

10.
Pore-forming toxins (PFTs) are a class of pathogen-secreted molecules that oligomerize to form transmembrane channels in cellular membranes. Determining the mechanism for how PFTs bind membranes is important in understanding their role in disease and for developing possible ways to block their action. Vibrio vulnificus, an aquatic pathogen responsible for severe food poisoning and septicemia in humans, secretes a PFT called V. vulnificus hemolysin (VVH), which contains a single C-terminal targeting domain predicted to resemble a β-trefoil lectin fold. In order to understand the selectivity of the lectin for glycan motifs, we expressed the isolated VVH β-trefoil domain and used glycan-chip screening to identify that VVH displays a preference for terminal galactosyl groups including N-acetyl-d-galactosamine and N-acetyl-d-lactosamine. The X-ray crystal structure of the VVH lectin domain solved to 2.0 Å resolution reveals a heptameric ring arrangement similar to the oligomeric form of the related, but inactive, lectin from Vibrio cholerae cytolysin. Structures bound to glycerol, N-acetyl-d-galactosamine, and N-acetyl-d-lactosamine outline a common and versatile mode of recognition allowing VVH to target a wide variety of cell-surface ligands. Sequence analysis in light of our structural and functional data suggests that VVH may represent an earlier step in the evolution of Vibrio PFTs.  相似文献   

11.
Maricaulis maris N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in l-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by l-arginine, although l-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by l-arginine, we have determined the structure of the mmNAGS/K complexed with l-arginine at 2.8 Å resolution. In contrast to the structure of mmNAGS/K in the absence of l-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the l-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyltransferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when l-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by l-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism.  相似文献   

12.
The substrate specificity of Escherichia coli N-acetylneuraminic acid lyase was previously switched from the natural condensation of pyruvate with N-acetylmannosamine, yielding N-acetylneuraminic acid, to the aldol condensation generating N-alkylcarboxamide analogues of N-acetylneuraminic acid. This was achieved by a single mutation of Glu192 to Asn. In order to analyze the structural changes involved and to more fully understand the basis of this switch in specificity, we have isolated all 20 variants of the enzyme at position 192 and determined the activities with a range of substrates. We have also determined five high-resolution crystal structures: the structures of wild-type E. coli N-acetylneuraminic acid lyase in the presence and in the absence of pyruvate, the structures of the E192N variant in the presence and in the absence of pyruvate, and the structure of the E192N variant in the presence of pyruvate and a competitive inhibitor (2R,3R)-2,3,4-trihydroxy-N,N-dipropylbutanamide. All structures were solved in space group P21 at resolutions ranging from 1.65 Å to 2.2 Å. A comparison of these structures, in combination with the specificity profiles of the variants, reveals subtle differences that explain the details of the specificity changes. This work demonstrates the subtleties of enzyme-substrate interactions and the importance of determining the structures of enzymes produced by directed evolution, where the specificity determinants may change from one substrate to another.  相似文献   

13.
Many carbohydrate-active enzymes have complex architectures comprising multiple modules that may be involved in catalysis, carbohydrate binding, or protein-protein interactions. Carbohydrate-binding modules (CBMs) are a common ancillary module whose function is to promote the adherence of the complete enzyme to carbohydrate substrates. CBM family 32 has been proposed to be one of the most diverse CBM families classified to date, yet all of the structurally characterized CBM32s thus far recognize galactose-based ligands. Here, we report a unique binding specificity and mode of ligand binding for a family 32 CBM. NagHCBM32-2 is one of four CBM32 modules in NagH, a family 84 glycoside hydrolase secreted by Clostridium perfringens. NagHCBM32-2 has the β-sandwich scaffold common to members of the family; however, its specificity for N-acetylglucosamine is unusual among CBMs. X-ray crystallographic analysis of the module at resolutions from 1.45 to 2.0 Å and in complex with disaccharides reveals that its mode of sugar recognition is quite different from that observed for galactose-specific CBM32s. This study continues to unravel the diversity of CBMs found in family 32 and how these CBMs might impart the carbohydrate-binding specificity to the extracellular glycoside hydrolases in C. perfringens.  相似文献   

14.
The OmpF porin from the Escherichia coli outer membrane folds into a trimer of β-barrels, each forming a wide aqueous pore allowing the passage of ions and small solutes. A long loop (L3) carrying multiple acidic residues folds into the β-barrel pore to form a narrow “constriction zone”. A strong and highly conserved charge asymmetry is observed at the constriction zone, with multiple basic residues attached to the wall of the β-barrel (Lys16, Arg42, Arg82 and Arg132) on one side, and multiple acidic residues of L3 (Asp107, Asp113, Glu117, Asp121, Asp126, Asp127) on the other side. Several computational studies have suggested that a strong transverse electric field could exist at the constriction zone as a result of such charge asymmetry, giving rise to separate permeation pathways for cations and anions. To examine this question, OmpF was expressed, purified and crystallized in the P63 space group and two different data sets were obtained at 2.6 Å and 3.0 Å resolution with K+ and Rb+, respectively. The Rb+-soaked crystals were collected at the rubidium anomalous wavelength of 0.8149 Å and cation positions were determined. A PEG molecule was observed in the pore region for both the K+ and Rb+-soaked crystals, where it interacts with loop L3. The results reveal the separate pathways of anions and cations across the constriction zone of the OmpF pore.  相似文献   

15.
Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)8-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites + 1 and + 2. A glycerol and three water molecules mimic a glucose residue at subsite − 1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite − 4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation.  相似文献   

16.
The structure of the N,N-dimethylthioformamide (DMTF) solvated gallium(III) ion has been determined in solution by means of extended X-ray absorption fine structure (EXAFS) spectroscopy. The gallium(III) ion is four-coordinate in tetrahedral fashion with a mean Ga-S bond distance of 2.233(2) Å in DMTF solution. At the dissolution of indium(III) perchlorate or trifluoromethanesulfonate in DMTF coordinated solvent molecules are partly reduced to sulfide ions, and a tetrameric complex with the composition [In4S4(SHN(CH3)2)12]4+ is formed. The structure of the solid tetrameric complex in the perchlorate salt was solved with single crystal X-ray diffraction. Four indium(III) ions and four sulfide ions form a highly symmetric heterocubane structure where each indium binds three bridging sulfide ions and each sulfide ion binds three indium(III) ions with a mean In-S bond distance of 2.584(1) Å, and S-In-S angles of 90.3(1)°. Each indium(III) additionally binds three DMTF molecules at significantly longer mean In-S bond distance, 2.703(1) Å; the S-In-S angles are in the range 80.3-90.4°. Large angle X-ray scattering data on a DMTF solution of indium(III) trifluoromethanesulfonate show that the same tetrameric species characterized in the solid state is also present in solution, whereas the EXAFS measurements only give information about the In-S bond distances due to the short core hole lifetime.  相似文献   

17.
N-Acetyl-l-glutamate kinase (NAGK), the paradigm enzyme of the amino acid kinase family, catalyzes the second step of arginine biosynthesis. Although substrate binding and catalysis were clarified by the determination of four crystal structures of the homodimeric Escherichia coli enzyme (EcNAGK), we now determine 2 Å resolution crystal structures of EcNAGK free from substrates or complexed with the product N-acetyl-l-glutamyl-5-phosphate (NAGP) and with sulfate, which reveal a novel, very open NAGK conformation to which substrates would associate and from which products would dissociate. In this conformation, the C-domain, which hosts most of the nucleotide site, rotates ∼ 24°-28° away from the N-domain, which hosts the acetylglutamate site, whereas the empty ATP site also exhibits some changes. One sulfate is found binding in the region where the β-phosphate of ATP normally binds, suggesting that ATP is first anchored to the β-phosphate site, before perfect binding by induced fit, triggering the shift to the closed conformation. In contrast, the acetylglutamate site is always well formed, although its β-hairpin lid is found here to be mobile, being closed only in the subunit of the EcNAGK-NAGP complex that binds NAGP most strongly. Lid closure appears to increase the affinity for acetylglutamate/NAGP and to stabilize the closed enzyme conformation via lid-C-domain contacts. Our finding of NAGP bound to the open conformation confirms that this product dissociates from the open enzyme form and allows reconstruction of the active center in the ternary complex with both products, delineating the final steps of the reaction, which is shown here by site-directed mutagenesis to involve centrally the invariant residue Gly11.  相似文献   

18.
The enzyme tetrahydrodipicolinate N-succinyltransferase (DapD) is part of the L-lysine biosynthetic pathway. This pathway is crucial for the survival of the pathogen Mycobacterium tuberculosis (Mtb) and, consequently, the enzymes of the pathway are potential drug targets. We report here the crystal structures of Mtb-DapD and of Mtb-DapD in complex with the co-factor succinyl-CoA (SCoA) at 2.15 Å and 1.97 Å resolution, respectively. Each subunit of the trimeric enzyme consists of three domains, of which the second, a left-handed, parallel β-helix (LβH domain), is the common structural motif of enzymes belonging to the hexapeptide repeat superfamily. The trimeric quaternary structure is stabilized by Mg2+ and Na+ located on the 3-fold axis. The binary complex of Mtb-DapD and SCoA reveals the binding mode(s) of the co-factor and a possible covalent reaction intermediate. The N-terminal domain of Mtb-DapD exhibits a unique architecture, including an interior water-filled channel, which allows access to a magnesium ion located at the 3-fold symmetry axis.  相似文献   

19.
To clarify the mechanism for substrate recognition of α-aminoadipate aminotransferase (AAA-AT) from Thermus thermophilus, the crystal structure of AAA-AT complexed with N-(5′-phosphopyridoxyl)-l-glutamate (PPE) was determined at 1.67 Å resolution. The crystal structure revealed that PPE is recognized by amino acid residues the same as those seen in N-(5′-phosphopyridoxyl)-l-α-aminoadipate (PPA) recognition; however, to bind the γ-carboxyl group of Glu at a fixed position, the Cα atom of the Glu moiety moves 0.80 Å toward the γ-carboxyl group in the PPE complex. Markedly decreased activity for Asp can be explained by the shortness of the aspartyl side chain to be recognized by Arg23 and further dislocation of the Cα atom of bound Asp. Site-directed mutagenesis revealed that Arg23 has dual functions for reaction, (i) recognition of γ (δ)-carboxyl group of Glu (AAA) and (ii) rearrangement of α2 helix by changing the interacting partners to place the hydrophobic substrate at the suitable position.  相似文献   

20.
Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with β-galactosidase activity (Escherichia coli LacZ), β-glucuronidase activity (Homo sapiens GusB), and β-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-β-d-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 Å resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role of E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural β-1,4-d-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-β-d-glucosaminide synthetic substrate provide insight into interactions in the + 1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号