首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Rad51 and Rad54 proteins play a key role in homologous recombination in eukaryotes. Recently, we reported that Ca2+ is required in vitro for human Rad51 protein to form an active nucleoprotein filament that is important for the search of homologous DNA and for DNA strand exchange, two critical steps of homologous recombination. Here we find that Ca2+ is also required for hRad54 protein to effectively stimulate DNA strand exchange activity of hRad51 protein. This finding identifies Ca2+ as a universal cofactor of DNA strand exchange promoted by mammalian homologous recombination proteins in vitro. We further investigated the hRad54-dependent stimulation of DNA strand exchange. The mechanism of stimulation appeared to include specific interaction of hRad54 protein with the hRad51 nucleoprotein filament. Our results show that hRad54 protein significantly stimulates homology-independent coaggregation of dsDNA with the filament, which represents an essential step of the search for homologous DNA. The results obtained indicate that hRad54 protein serves as a dsDNA gateway for the hRad51-ssDNA filament, promoting binding and an ATP hydrolysis-dependent translocation of dsDNA during the search for homologous sequences.  相似文献   

2.
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.  相似文献   

3.
Homologous recombination is important for the repair of double-stranded DNA breaks in all organisms. Rad51 and Rad54 proteins are two key components of the homologous recombination machinery in eukaryotes. In vitro, Rad51 protein assembles with single-stranded DNA to form the helical nucleoprotein filament that promotes DNA strand exchange, a basic step of homologous recombination. Rad54 protein interacts with this Rad51 nucleoprotein filament and stimulates its DNA pairing activity, suggesting that Rad54 protein is a component of the nucleoprotein complex involved in the DNA homology search. Here, using physical criteria, we demonstrate directly the formation of Rad54-Rad51-DNA nucleoprotein co-complexes that contain equimolar amounts of each protein. The binding of Rad54 protein significantly stabilizes the Rad51 nucleoprotein filament formed on either single-stranded DNA or double-stranded DNA. The Rad54-stabilized nucleoprotein filament is more competent in DNA strand exchange and acts over a broader range of solution conditions. Thus, the co-assembly of an interacting partner with the Rad51 nucleoprotein filament represents a novel means of stabilizing the biochemical entity central to homologous recombination, and reveals a new function of Rad54 protein.  相似文献   

4.
In human cells, error-free repair of DNA double-strand breaks requires the DNA pairing and strand exchange activities of RAD51 recombinase. Activation of RAD51 recombination activities requires the assembly of RAD51 presynaptic filaments on the single-stranded DNA that forms at resected DSB ends. Mutations in proteins that control presynaptic filament assembly, such as BRCA2, and in RAD51 itself, are associated with human breast cancer. Here we describe the properties of two mutations in RAD51 protein that derive from human lung and kidney tumors, respectively. Sequence variants Q268P and Q272L both map to the DNA binding loop 2 (L2) region of RAD51, a motif that is involved in DNA binding and in the allosteric activation of ATP hydrolysis and DNA strand exchange activities. Both mutations alter the thermal stability, DNA binding, and ATPase properties of RAD51, however both variants retain intrinsic DNA strand exchange activity towards oligonucleotide substrates under optimized conditions. In contrast, both Q268P and Q272L variants exhibit drastically reduced DNA strand exchange activity in reaction mixtures containing long homologous ssDNA and dsDNA substrates and human RPA protein. Mixtures of wild-type and variant proteins also exhibit reduced DNA strand exchange activity, suggesting that heterozygous mutations could negatively affect DNA recombination and repair processes in vivo. Together, the findings of this study suggest that hypomorphic missense mutations in RAD51 protein could be drivers of genomic instability in cancer cells, and thereby contribute to the etiology of metastatic disease.  相似文献   

5.
Human BRCA2, a breast and ovarian cancer suppressor, binds to the DNA recombinase RAD51 through eight conserved BRC repeats, motifs of approximately 30 residues, dispersed across a large region of the protein. BRCA2 is essential for homologous recombination in vivo, but isolated BRC repeat peptides can prevent the assembly of RAD51 into active nucleoprotein filaments in vitro, suggesting a model in which BRCA2 sequesters RAD51 in undamaged cells, and promotes recombinase function after DNA damage. How BRCA2 might fulfill these dual functions is unclear. We have purified a fragment of human BRCA2 (BRCA2(BRC1-8)) with 1127 residues spanning all 8 BRC repeats but excluding the C-terminal DNA-binding domain (BRCA2(CTD)). BRCA2(BRC1-8) binds RAD51 nucleoprotein filaments in a ternary complex, indicating it may organize RAD51 on DNA. Human RAD51 is relatively ineffective in vitro at strand exchange between homologous DNA molecules unless non-physiological ions like NH4+ are present. In an ionic milieu more typical of the mammalian nucleus, BRCA2(BRCI-8) stimulates RAD51-mediated strand exchange, suggesting it may be an essential co-factor in vivo. Thus, the human BRC repeats, embedded within their surronding sequences as an eight-repeat unit, mediate homologous recombination independent of the BRCA2(CTD) through a previously unrecognized role in control of RAD51 activity.  相似文献   

6.
The human RAD51 recombinase possesses DNA pairing and strand exchange activities that are essential for the error-free, homology-directed repair of DNA double-strand breaks. The recombination activities of RAD51 are activated upon its assembly into presynaptic filaments on single-stranded DNA at resected DSB ends. Defects in filament assembly caused by mutations in RAD51 or its regulators such as BRCA2 are associated with human cancer. Here we describe two novel RAD51 missense variants located in the multimerization/BRCA2 binding region of RAD51. F86L is a breast tumor-derived somatic variant that affects the interface between adjacent RAD51 protomers in the presynaptic filament. E258A is a germline variant that maps to the interface region between the N-terminal and RecA homology domains of RAD51. Both variants exhibit abnormal biochemistry including altered DNA strand exchange activity. Both variants inhibit the DNA strand exchange activity of wild-type RAD51, suggesting a mechanism for negative dominance. The inhibitory effect of F86L on wild-type RAD51 is surprising since F86L alone exhibits robust DNA strand exchange activity. Our findings indicate that even DNA strand exchange-proficient variants can have negative functional interactions with wild-type RAD51. Thus heterozygous F86L or E258 mutations in RAD51 could promote genomic instability, and thereby contribute to tumor progression.  相似文献   

7.
Mazloum N  Zhou Q  Holloman WK 《Biochemistry》2007,46(24):7163-7173
Brh2 is the Ustilago maydis ortholog of the BRCA2 tumor suppressor. It functions in repair of DNA by homologous recombination by controlling the action of Rad51. A critical aspect in the control appears to be the recruitment of Rad51 to single-stranded DNA regions exposed as lesions after damage or following a disturbance in DNA synthesis. In previous experimentation, Brh2 was shown to nucleate formation of the Rad51 nucleoprotein filament that becomes the active element in promoting homologous pairing and DNA strand exchange. Nucleation was found to be initiated at junctions of double-stranded and single-stranded DNA. Here we investigated the DNA binding specificity of Brh2 in more detail using oligonucleotide substrates. We observed that Brh2 prefers partially duplex structures with single-stranded branches, flaps, or D-loops. We found also that Brh2 has an inherent ability to promote DNA annealing and strand exchange reactions on free as well as RPA-coated substrates. Unlike Rad51, Brh2 was able to promote DNA strand exchange when preincubated with double-stranded DNA. These findings raise the notion that Brh2 may have roles in homologous recombination beyond the previously established Rad51 mediator activity.  相似文献   

8.
Role of BRCA2 in control of the RAD51 recombination and DNA repair protein   总被引:14,自引:0,他引:14  
Individuals carrying BRCA2 mutations are predisposed to breast and ovarian cancers. Here, we show that BRCA2 plays a dual role in regulating the actions of RAD51, a protein essential for homologous recombination and DNA repair. First, interactions between RAD51 and the BRC3 or BRC4 regions of BRCA2 block nucleoprotein filament formation by RAD51. Alterations to the BRC3 region that mimic cancer-associated BRCA2 mutations fail to exhibit this effect. Second, transport of RAD51 to the nucleus is defective in cells carrying a cancer-associated BRCA2 truncation. Thus, BRCA2 regulates both the intracellular localization and DNA binding ability of RAD51. Loss of these controls following BRCA2 inactivation may be a key event leading to genomic instability and tumorigenesis.  相似文献   

9.
The yeast Srs2 helicase removes Rad51 nucleoprotein filaments from single-stranded DNA (ssDNA), preventing DNA strand invasion and exchange by homologous recombination. This activity requires a physical interaction between Srs2 and Rad51, which stimulates ATP turnover in the Rad51 nucleoprotein filament and causes dissociation of Rad51 from ssDNA. Srs2 also possesses a DNA unwinding activity and here we show that assembly of more than one Srs2 molecule on the 3′ ssDNA overhang is required to initiate DNA unwinding. When Rad51 is bound on the double-stranded DNA, its interaction with Srs2 blocks the helicase (DNA unwinding) activity of Srs2. Thus, in different DNA contexts, the physical interaction of Rad51 with Srs2 can either stimulate or inhibit the remodeling functions of Srs2, providing a means for tailoring DNA strand exchange activities to enhance the fidelity of recombination.  相似文献   

10.
Brh2, a member of the BRCA2 family of proteins, governs homologous recombination in the fungus Ustilago maydis through interaction with Rad51. Brh2 serves at an early step in homologous recombination to mediate Rad51 nucleoprotein filament formation and also has the capability to function at a later step in recombination through its inherent DNA annealing activity. Rec2, a Rad51 paralogue, and Rad52 are additional components of the homologous recombination system, but the absence of either is less critical than Brh2 for operational activity. Here we tested a variety of mutant forms of Brh2 for activity in recombinational repair as measured by DNA repair proficiency. We found that a mutant of Brh2 deleted of the non-canonical DNA-binding domain within the N-terminal region is dependent upon the presence of Rad52 for DNA repair activity. We also determined that a motif first identified in human BRCA2 as important in binding DMC1 also contributes to DNA repair proficiency and cooperates with the BRC element in Rad51 binding.  相似文献   

11.
The BRCA2 breast cancer tumor suppressor is involved in the repair of double strand breaks and broken replication forks by homologous recombination through its interaction with DNA repair protein Rad51. Cells defective in BRCA2.FANCD1 are extremely sensitive to mitomycin C (MMC) similarly to cells deficient in any of the Fanconi anemia (FA) complementation group proteins (FANC). These observations suggest that the FA pathway and the BRCA2 and Rad51 repair pathway may be linked, although a functional connection between these pathways in DNA damage signaling remains to be determined. Here, we systematically investigated the interaction between these pathways. We show that in response to DNA damage, BRCA2-dependent Rad51 nuclear focus formation was normal in the absence of FANCD2 and that FANCD2 nuclear focus formation and mono-ubiquitination appeared normal in BRCA2-deficient cells. We report that the absence of BRCA2 substantially reduced homologous recombination repair of DNA breaks, whereas the absence of FANCD2 had little effect. Furthermore, we established that depletion of BRCA2 or Rad51 had a greater effect on cell survival in response to MMC than depletion of FANCD2 and that depletion of BRCA2 in FANCD2 mutant cells further sensitized these cells to MMC. Our results suggest that FANCD2 mediates double strand DNA break repair independently of Rad51-associated homologous recombination.  相似文献   

12.
The BRCA2 tumour suppressor regulates the RAD-51 recombinase during double-strand break (DSB) repair by homologous recombination (HR) but how BRCA2 executes its functions is not well understood. We previously described a functional homologue of BRCA2 in Caenorhabditis elegans (CeBRC-2) that binds preferentially to single-stranded DNA via an OB-fold domain and associates directly with RAD-51 via a single BRC domain. Consistent with a direct role in HR, Cebrc-2 mutants are defective for repair of meiotic and radiation-induced DSBs due to an inability to regulate RAD-51. Here, we explore the function of CeBRC-2 in HR processes using purified proteins. We show that CeBRC-2 stimulates RAD-51-mediated D-loop formation and reduces the rate of ATP hydrolysis catalysed by RAD-51. These functions of CeBRC-2 are dependent upon direct association with RAD-51 via its BRC motif and on its DNA-binding activity, as point mutations in the BRC domain that abolish RAD-51 binding or the BRC domain of CeBRC-2 alone, lacking the DNA-binding domain, fail to stimulate RAD-51-mediated D-loop formation and do not reduce the rate of ATP hydrolysis by RAD-51. Phenotypic comparison of Cebrc-2 and rad-51 mutants also revealed a role for CeBRC-2 in an error-prone DSB repair pathway independent of rad-51 and non-homologous end joining, raising the possibility that CeBRC-2 may have replaced the role of vertebrate Rad52 in DNA single-strand annealing (SSA), which is missing from C. elegans. Indeed, we show here that CeBRC-2 mediates SSA of RPA-oligonucleotide complexes similar to Rad52. These results reveal RAD-51-dependent and -independent functions of CeBRC-2 that provide an explanation for the difference in DNA repair defects observed in Cebrc-2 and rad-51 mutants, and define mechanistic roles for CeBRC-2 in HR and in the SSA pathway for DSB repair.  相似文献   

13.
Rad51 and Rad54 proteins are important for the repair of double-stranded DNA (dsDNA) breaks by homologous recombination in eukaryotes. Rad51 assembles on single-stranded DNA (ssDNA) to form a helical nucleoprotein filament that performs homologous pairing with dsDNA; Rad54 stimulates this pairing substantially. Here, we demonstrate that Rad54 acts in concert with the mature Rad51-ssDNA filament. Enhancement of DNA pairing by Rad54 is greatest at an equimolar ratio relative to Rad51 within the filament. Reciprocally, the Rad51-ssDNA filament enhances both the dsDNA-dependent ATPase and the dsDNA unwinding activities of Rad54. We conclude that Rad54 participates in the DNA homology search as a component of the Rad51-nucleoprotein filament and that the filament delivers Rad54 to the dsDNA pairing locus, thereby linking the unwinding of potential target DNA with the homology search process.  相似文献   

14.
BRCA2 is a breast tumor suppressor with a potential function in the cellular response to DNA damage. BRCA2 binds to Rad51 through its BRC repeats. In support of the biological significance of this interaction, we found that the complex of BRCA2 and Rad51 in breast cancer MCF-7 cells was diminished upon conditional expression of a wild-type, but not a mutated, BRC4 repeat using the tetracycline-inducible system. Cells expressing a wild-type BRC4 repeat showed hypersensitivity to gamma-irradiation, an inability to form Rad51 radiation-induced foci, and a failure of radiation-induced G(2)/M, but not G(1)/S, checkpoint control. These results strongly suggest that the interaction between BRCA2 and Rad51 mediated by BRC repeats is critical for the cellular response to DNA damage.  相似文献   

15.
The repair of DNA double-strand breaks by homologous recombination commences by nucleolytic degradation of the 5′-terminated strand of the DNA break. This leads to the formation of 3′-tailed DNA, which serves as a substrate for the strand exchange protein Rad51. The nucleoprotein filament then invades homologous DNA to drive template-directed repair. In this review, I discuss mainly the mechanisms of DNA end resection in Saccharomyces cerevisiae, which includes short-range resection by Mre11-Rad50-Xrs2 and Sae2, as well as processive long-range resection by Sgs1-Dna2 or Exo1 pathways. Resection mechanisms are highly conserved between yeast and humans, and analogous machineries are found in prokaryotes as well.  相似文献   

16.
Transient induction or suppression of target genes is useful to study the function of toxic or essential genes in cells. Here we apply a Tet-On 3G system to DT40 lymphoma B cell lines, validating it for three different genes. Using this tool, we then show that overexpression of the chicken BRC4 repeat of the tumor suppressor BRCA2 impairs cell proliferation and induces chromosomal breaks. Mechanistically, high levels of BRC4 suppress double strand break-induced homologous recombination, inhibit the formation of RAD51 recombination repair foci, reduce cellular resistance to DNA damaging agents and induce a G2 damage checkpoint-mediated cell-cycle arrest. The above phenotypes are mediated by BRC4 capability to bind and inhibit RAD51. The toxicity associated with BRC4 overexpression is exacerbated by chemotherapeutic agents and reversed by RAD51 overexpression, but it is neither aggravated nor suppressed by a deficit in the non-homologous end-joining pathway of double strand break repair. We further find that the endogenous BRCA2 mediates the cytotoxicity associated with BRC4 induction, thus underscoring the possibility that BRC4 or other domains of BRCA2 cooperate with ectopic BRC4 in regulating repair activities or mitotic cell division. In all, the results demonstrate the utility of the Tet-On 3G system in DT40 research and underpin a model in which BRC4 role on cell proliferation and chromosome repair arises primarily from its suppressive role on RAD51 functions.  相似文献   

17.
BRCA2 has an essential function in DNA repair by homologous recombination, interacting with RAD51 via short motifs in the middle and at the C terminus of BRCA2. Here, we report that a conserved 36-residue sequence of human BRCA2 encoded by exon 27 (BRCA2Exon27) interacts with RAD51 through the specific recognition of oligomerized RAD51 ATPase domains. BRCA2Exon27 binding stabilizes the RAD51 nucleoprotein filament against disassembly by BRC repeat 4. The protection is specific for RAD51 filaments formed on single-stranded DNA and is lost when BRCA2Exon27 is phosphorylated on Ser3291. We propose that productive recombination results from the functional balance between the different RAD51-binding modes [corrected] of the BRC repeat and exon 27 regions of BRCA2. Our results further suggest a mechanism in which CDK phosphorylation of BRCA2Exon27 at the G2-M transition alters the balance in favor of RAD51 filament disassembly, thus terminating recombination.  相似文献   

18.
19.
RecBCD enzyme facilitates loading of RecA protein onto ssDNA produced by its helicase/nuclease activity. This process is essential for RecBCD-mediated homologous recombination. Here, we establish that the C-terminal nuclease domain of the RecB subunit (RecBnuc) forms stable complexes with RecA. Interestingly, RecBnuc also interacts with and loads noncognate DNA strand exchange proteins. Interaction is with a conserved element of the RecA-fold, but because the binding to noncognate proteins decreases in a phylogenetically consistent way, species-specific interactions are also present. RecBnuc does not impede activities of RecA that are important to DNA strand exchange, consistent with its role in targeting of RecA. Modeling predicts the interaction interface for the RecA-RecBCD complex. Because a similar interface is involved in the binding of human Rad51 to the conserved BRC repeat of BRCA2 protein, the RecB-domain may be one of several structural domains that interact with and recruit DNA strand exchange proteins to DNA.  相似文献   

20.
In Saccharomyces cerevisiae, the Rad54 protein participates in the recombinational repair of double-strand DNA breaks together with the Rad51, Rad52, Rad55 and Rad57 proteins. In vitro, Rad54 interacts with Rad51 and stimulates DNA strand exchange promoted by Rad51 protein. Rad54 is a SWI2/SNF2-related protein that possesses double-stranded DNA-dependent ATPase activity and changes DNA topology in an ATP hydrolysis-dependent manner. Here we show that Rad54 catalyzes bidirectional nucleosome redistribution by sliding nucleosomes along DNA. Nucleosome redistribution is greatly stimulated by the Rad51 nucleoprotein filament but does not require the presence of homologous single-stranded DNA within the filament. On the basis of these data, we propose that Rad54 facilitates chromatin remodeling and, perhaps more generally, protein clearing at the homology search step of genetic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号