首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells protect themselves against oxygen stress and reactive oxygen species. An important enzyme in this process is superoxide dismutase, Sod1, which converts superoxide radicals into water and hydrogen peroxide. The biogenesis of functional Sod1 is dependent on its copper chaperone, Ccs1, which introduces a disulfide bond and a copper ion into Sod1. Ccs1 and Sod1 are present in the cytosol but are also found in the mitochondrial intermembrane space (IMS), the compartment between the outer and the inner membrane of mitochondria. Ccs1 mediates mitochondrial localization of Sod1.Here, we report on the biogenesis of the fractions of Ccs1 and Sod1 present in mitochondria of Saccharomyces cerevisiae. The IMS of mitochondria harbors a disulfide relay system consisting of the import receptor Mia40 and the thiol oxidase Erv1, which drives the import of substrates with conserved cysteine residues arranged in typical twin Cx3C and twin Cx9C motifs. We show that depletion of Mia40 results in decreased levels of Ccs1 and Sod1. On the other hand, overexpression of Mia40 increased the mitochondrial fraction of both proteins. In addition, the import rates of Ccs1 were enhanced by increased levels of Mia40 and reduced upon depletion of Mia40. Mia40 forms mixed disulfides with Ccs1, suggesting a role of Mia40 for the generation of disulfide bonds in Ccs1. We suggest that the disulfide relay system transfers disulfide bonds via Mia40 to Ccs1, which then shuttles disulfide bonds to Sod1. In conclusion, the disulfide relay system is crucial for the import of Ccs1, thereby affecting the transport of Sod1, and it can control the distribution of Ccs1 and Sod1 between the IMS of mitochondria and the cytosol.  相似文献   

2.
The thiol oxidase Erv1 and the redox-regulated receptor Mia40/Tim40 are components of a disulfide relay system which mediates import of proteins into the intermembrane space (IMS) of mitochondria. Here we report that Erv1 requires Mia40 for its import into mitochondria. After passage across the translocase of the mitochondrial outer membrane Erv1 interacts via disulfide bonds with Mia40. Erv1 does not contain twin “CX3C” or twin “CX9C” motifs which are crucial for import of typical substrates of this pathway and it does not need two “CX2C” motifs for import into mitochondria. Thus, Erv1 represents an unusual type of substrate of the Mia40-dependent import pathway.  相似文献   

3.
Mia40 and Erv1 execute a disulfide relay to import the small Tim proteins into the mitochondrial intermembrane space. Here, we have reconstituted the oxidative folding pathway in vitro with Tim13 as a substrate and determined the midpoint potentials of Mia40 and Tim13. Specifically, Mia40 served as a direct oxidant of Tim13, and Erv1 was required to reoxidize Mia40. During oxidation, four electrons were transferred from Tim13 with the insertion of two disulfide bonds in succession. The extent of Tim13 oxidation was directly dependent on Mia40 concentration and independent of Erv1 concentration. Characterization of the midpoint potentials showed that electrons flowed from Tim13 with a more negative midpoint potential of −310 mV via Mia40 with an intermediate midpoint potential of −290 mV to the C130-C133 pair of Erv1 with a positive midpoint potential of −150 mV. Intermediary complexes between Tim13-Mia40 and Mia40-Erv1 were trapped. Last, mutating C133 of the catalytic C130-C133 pair or C30 of the shuttle C30-C33 pair in Erv1 abolished oxidation of Tim13, whereas mutating the cysteines in the redox-active CPC motif, but not the structural disulfide linkages of the CX9C motif of Mia40, prevented Tim13 oxidation. Thus, we demonstrate that Mia40, Erv1, and oxygen are the minimal machinery for Tim13 oxidation.  相似文献   

4.
The compartment between the outer and the inner membranes of mitochondria, the intermembrane space (IMS), harbours a variety of proteins that contain disulfide bonds. Many of these proteins possess a conserved twin Cx(3)C motif or twin Cx(9)C motif. Recently, a disulfide relay system in the IMS has been identified which consists of two essential components, the sulfhydryl oxidase Erv1 and the redox-regulated import receptor Mia40/Tim40. The disulfide relay system drives the import of these cysteine-rich proteins into the IMS of mitochondria by an oxidative folding mechanism. In order to enable Mia40 to perform the oxidation of substrate proteins, the sulfhydryl oxidase Erv1 mediates the oxidation of Mia40 in a disulfide transfer reaction. To recycle Erv1 into its oxidized form, electrons are transferred to cytochrome c connecting the disulfide relay system to the electron transport chain of mitochondria. Despite the lack of homology of the components, the disulfide relay system in the IMS resembles the oxidation system in the periplasm of bacteria presumably reflecting the evolutionary origin of the IMS from the bacterial periplasm.  相似文献   

5.
Members of the twin Cx9C protein family constitute the largest group of proteins in the intermembrane space (IMS) of mitochondria. Despite their conserved nature and their essential role in the biogenesis of the respiratory chain, the molecular function of twin Cx9C proteins is largely unknown. We performed a SILAC-based quantitative proteomic analysis to identify interaction partners of the conserved twin Cx9C protein Cox19. We found that Cox19 interacts in a dynamic manner with Cox11, a copper transfer protein that facilitates metalation of the Cu(B) center of subunit 1 of cytochrome c oxidase. The interaction with Cox11 is critical for the stable accumulation of Cox19 in mitochondria. Cox19 consists of a helical hairpin structure that forms a hydrophobic surface characterized by two highly conserved tyrosine-leucine dipeptides. These residues are essential for Cox19 function and its specific binding to a cysteine-containing sequence in Cox11. Our observations suggest that an oxidative modification of this cysteine residue of Cox11 stimulates Cox19 binding, pointing to a redox-regulated interplay of Cox19 and Cox11 that is critical for copper transfer in the IMS and thus for biogenesis of cytochrome c oxidase.  相似文献   

6.
Mia40-catalyzed disulfide formation drives the import of many proteins into the mitochondria. Here we characterize the oxidative folding of Cox19, a twin CX9C Mia40 substrate. Cox19 oxidation is extremely slow, explaining the persistence of import-competent reduced species in the cytosol. Mia40 accelerates Cox19 folding through the specific recognition of the third Cys in the second helical CX9C motif and the subsequent oxidation of the inner disulfide bond. This renders a native-like intermediate that oxidizes in a slow uncatalyzed reaction into native Cox19. The same intermediate dominates the pathway in the absence of Mia40, and chemical induction of an α-helical structure by trifluoroethanol suffices to accelerate productive folding and mimic the Mia40 folding template mechanism. The Mia40 role is to funnel a rough folding landscape, skipping the accumulation of kinetic traps, providing a rationale for the promiscuity of Mia40.  相似文献   

7.
The mitochondrial intermembrane space (IMS) contains an essential machinery for protein import and assembly (MIA). Biogenesis of IMS proteins involves a disulfide relay between precursor proteins, the cysteine-rich IMS protein Mia40 and the sulfhydryl oxidase Erv1. How precursor proteins are specifically directed to the IMS has remained unknown. Here we systematically analyzed the role of cysteine residues in the biogenesis of the essential IMS chaperone complex Tim9-Tim10. Although each of the four cysteines of Tim9, as well as of Tim10, is required for assembly of the chaperone complex, only the most amino-terminal cysteine residue of each precursor is critical for translocation across the outer membrane and interaction with Mia40. Mia40 selectively recognizes cysteine-containing IMS proteins in a site-specific manner in organello and in vitro. Our results indicate that Mia40 acts as a trans receptor in the biogenesis of mitochondrial IMS proteins.  相似文献   

8.
Allen JW  Ferguson SJ  Ginger ML 《FEBS letters》2008,582(19):2817-2825
Mia40-dependent disulphide bond exchange is used by animals, yeast, and probably plants for import of small, cysteine-rich proteins into the mitochondrial intermembrane space (IMS). During import, electrons are transferred from the imported substrate to Mia40 then, via the sulphydryl oxidase Erv1, into the respiratory chain. Curiously, however, there are protozoa which contain substrates for Mia40-dependent import, but lack Mia40. There are also organisms where Erv1 is present in the absence of respiratory chain components. In accommodating these and other relevant observations pertaining to mitochondrial cell biology, we hypothesise that the ancestral IMS import pathway for disulphide-bonded proteins required only Erv1 (but not Mia40) and identify parasites in which O(2) is the likely physiological oxidant for Erv1.  相似文献   

9.
Mitochondria import nuclear-encoded precursor proteins to four different subcompartments. Specific import machineries have been identified that direct the precursor proteins to the mitochondrial outer membrane, inner membrane or matrix, respectively. However, a machinery dedicated to the import of mitochondrial intermembrane space (IMS) proteins has not been found so far. We have identified the essential IMS protein Mia40 (encoded by the Saccharomyces cerevisiae open reading frame YKL195w). Mitochondria with a mutant form of Mia40 are selectively inhibited in the import of several small IMS proteins, including the essential proteins Tim9 and Tim10. The import of proteins to the other mitochondrial subcompartments does not depend on functional Mia40. The binding of small Tim proteins to Mia40 is crucial for their transport across the outer membrane and represents an initial step in their assembly into IMS complexes. We conclude that Mia40 is a central component of the protein import and assembly machinery of the mitochondrial IMS.  相似文献   

10.
Coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) is a mitochondrial inner membrane (IM) protein facing toward the intermembrane space (IMS). In the IMS, ChChd3 complexes with multiple proteins at the crista junctions and contact sites and plays a key role in maintaining crista integrity. ChChd3 is myristoylated at the N terminus and has a CHCH domain with twin CX9C motifs at its C terminus. The CHCH domain proteins are traditionally imported and trapped in the IMS by using a disulfide relay system mediated by Mia40 and Erv1. In this study, we systematically analyzed the role of the myristoylation and the CHCH domain in the import and mitochondrial localization of ChChd3. Based on our results, we predict that myristoylation promotes binding of ChChd3 to the outer membrane and that the CHCH domain translocates the protein across the outer membrane. By analysis of the CHCH domain cysteine mutants, we further show that they have distinct roles in binding to Mia40 in the IMS and proper folding of the protein. The transient disulfide-bonded intermediate with Mia40 is formed preferentially between the second cysteine in helix 1, Cys193, and the active site cysteine in Mia40, Cys55. Although each of the four cysteines is essential for folding of the protein and binding to mitofilin and Sam50, they are not involved in import. Together our results indicate that both the myristoylation and the CHCH domain are essential for the import and mitochondrial localization of ChChd3. Once imported, ChChd3 binds to Mia40 for further folding and assembly into macromolecular complexes.  相似文献   

11.
The disulfide relay system in the mitochondrial intermembrane space drives the import of proteins with twin CX9C or twin CX3C motifs by an oxidative folding mechanism. This process requires disulfide bond transfer from oxidized Mia40 to a substrate protein. Reduced Mia40 is reoxidized/regenerated by the FAD-linked sulfhydryl oxidase Erv1 (EC 1.8.3.2). Full-length Erv1 consists of a flexible N-terminal shuttle domain (NTD) and a conserved C-terminal core domain (CTD). Here, we present crystal structures at 2.0 Å resolution of the CTD and at 3.0 Å resolution of a C30S/C133S double mutant of full-length Erv1 (Erv1FL). Similar to previous homologous structures, the CTD exists as a homodimer, with each subunit consisting of a conserved four-helix bundle that accommodates the isoalloxazine ring of FAD and an additional single-turn helix. The structure of Erv1FL enabled us to identify, for the first time, the three-dimensional structure of the Erv1NTD, which is an amphipathic helix flanked by two flexible loops. This structure also represents an intermediate state of electron transfer from the NTD to the CTD of another subunit. Comparative structural analysis revealed that the four-helix bundle of the CTD forms a wide platform for the electron donor NTD. Moreover, computational simulation combined with multiple-sequence alignment suggested that the amphipathic helix close to the shuttle redox enter is critical for the recognition of Mia40, the upstream electron donor. These findings provide structural insights into electron transfer from Mia40 via the shuttle domain of one subunit of Erv1 to the CTD of another Erv1 subunit.  相似文献   

12.
Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.  相似文献   

13.
Mia40p and Erv1p are components of a translocation pathway for the import of cysteine-rich proteins into the intermembrane space of mitochondria. We have characterized the redox behavior of Mia40p and reconstituted the disulfide transfer system of Mia40p by using recombinant functional C-terminal fragment of Mia40p, Mia40C, and Erv1p. Oxidized Mia40p contains three intramolecular disulfide bonds. One disulfide bond connects the first two cysteine residues in the CPC motif. The second and the third bonds belong to the twin CX(9)C motif and bridge the cysteine residues of two CX(9)C segments. In contrast to the stabilizing disulfide bonds of the twin CX(9)C motif, the first disulfide bond was easily accessible to reducing agents. Partially reduced Mia40C generated by opening of this bond as well as fully reduced Mia40C were oxidized by Erv1p in vitro. In the course of this reaction, mixed disulfides of Mia40C and Erv1p were formed. Reoxidation of fully reduced Mia40C required the presence of the first two cysteine residues in Mia40C. However, efficient reoxidation of a Mia40C variant containing only the cysteine residues of the twin CX(9)C motif was observed when in addition to Erv1p low amounts of wild type Mia40C were present. In the reconstituted system the thiol oxidase Erv1p was sufficient to transfer disulfide bonds to Mia40C, which then could oxidize the variant of Mia40C. In summary, we reconstituted a disulfide relay system consisting of Mia40C and Erv1p.  相似文献   

14.
The Mia40 import pathway facilitates the import and oxidative folding of cysteine-rich protein substrates into the mitochondrial intermembrane space. Here we describe the in vitro and in organello oxidative folding of Cmc1, a twin CX(9)C-containing substrate, which contains an unpaired cysteine. In vitro, Cmc1 can be oxidized by the import receptor Mia40 alone when in excess or at a lower rate by only the sulfhydryl oxidase Erv1. However, physiological and efficient Cmc1 oxidation requires Erv1 and Mia40. Cmc1 forms a stable intermediate with Mia40 and is released from this interaction in the presence of Erv1. The three proteins are shown to form a ternary complex in mitochondria. Our results suggest that this mechanism facilitates efficient formation of multiple disulfides and prevents the formation of non-native disulfide bonds.  相似文献   

15.
A first component involved in import into the mitochondrial intermembrane space, named Mia40, has been described recently in yeast. Here, we identified the human MIA40 as a novel and ubiquitously expressed component of human mitochondria. It belongs to a novel protein family whose members share six highly conserved cysteine residues constituting a -CXC-CX9C-CX9C- motif. Human MIA40 is significantly smaller than the fungal protein and lacks the N-terminal extension including a transmembrane region and mitochondrial targeting signal. It forms soluble complexes within the intermembrane space of human mitochondria. Depletion of MIA40 in human cells by RNA interference specifically affected steady-state levels of small and cysteine-containing intermembrane space proteins like DDP1 and TIM10A, suggesting that MIA40 acts along the import pathway into the intermembrane space. Studies on the in vivo redox state of human MIA40 demonstrated that it contains intramolecular disulfide bonds. Thiol-trapping assays revealed the co-existence of different oxidation states of human MIA40 within the cell. Furthermore, we show that the twin -CX9C- motif is specifically required for import and stability of MIA40 in mitochondria. Partial mutation of this motif affects stable accumulation of MIA40 in the intermembrane space, whereas mutation of all cysteine residues in this motif inhibits import in mitochondria. Taken together, we conclude that the biogenesis and function of MIA40 in the mitochondrial intermembrane space is dependent on redox processes involving conserved cysteine residues.  相似文献   

16.
The copper chaperone for superoxide dismutase 1 (Ccs1) provides an important cellular function against oxidative stress. Ccs1 is present in the cytosol and in the intermembrane space (IMS) of mitochondria. Its import into the IMS depends on the Mia40/Erv1 disulfide relay system, although Ccs1 is, in contrast to typical substrates, a multidomain protein and lacks twin Cx(n)C motifs. We report on the molecular mechanism of the mitochondrial import of Saccharomyces cerevisiae Ccs1 as the first member of a novel class of unconventional substrates of the disulfide relay system. We show that the mitochondrial form of Ccs1 contains a stable disulfide bond between cysteine residues C27 and C64. In the absence of these cysteines, the levels of Ccs1 and Sod1 in mitochondria are strongly reduced. Furthermore, C64 of Ccs1 is required for formation of a Ccs1 disulfide intermediate with Mia40. We conclude that the Mia40/Erv1 disulfide relay system introduces a structural disulfide bond in Ccs1 between the cysteine residues C27 and C64, thereby promoting mitochondrial import of this unconventional substrate. Thus the disulfide relay system is able to form, in addition to double disulfide bonds in twin Cx(n)C motifs, single structural disulfide bonds in complex protein domains.  相似文献   

17.
The mitochondrial phospholipid metabolism critically depends on members of the conserved Ups1/PRELI‐like protein family in the intermembrane space. Ups1 and Ups2 (also termed Gep1) were shown to regulate the accumulation of cardiolipin (CL) and phosphatidylethanolamine (PE), respectively, in a lipid‐specific but coordinated manner. It remained enigmatic, however, how the relative abundance of both phospholipids in mitochondrial membranes is adjusted on the molecular level. Here, we describe a novel regulatory circuit determining the accumulation of Ups1 and Ups2 in the intermembrane space. Ups1 and Ups2 are intrinsically unstable proteins, which are degraded by distinct mitochondrial peptidases. The turnover of Ups2 is mediated by the i‐AAA protease Yme1, whereas Ups1 is degraded by both Yme1 and the metallopeptidase Atp23. We identified Mdm35, a member of the twin Cx9C protein family, as a novel interaction partner of Ups1 and Ups2. Binding to Mdm35 ensures import and protects both proteins against proteolysis. Homologues to all components of this pathway are present in higher eukaryotes, suggesting that the regulation of mitochondrial CL and PE levels is conserved in evolution.  相似文献   

18.
Cell polarization during monopolar cytokinesis   总被引:2,自引:0,他引:2       下载免费PDF全文
The biogenesis of mitochondrial intermembrane space proteins depends on specific machinery that transfers disulfide bonds to precursor proteins. The machinery shares features with protein relays for disulfide bond formation in the bacterial periplasm and endoplasmic reticulum. A disulfide-generating enzyme/sulfhydryl oxidase oxidizes a disulfide carrier protein, which in turn transfers a disulfide to the substrate protein. Current views suggest that the disulfide carrier alternates between binding to the oxidase and the substrate. We have analyzed the cooperation of the disulfide relay components during import of precursors into mitochondria and identified a ternary complex of all three components. The ternary complex represents a transient and intermediate step in the oxidation of intermembrane space precursors, where the oxidase Erv1 promotes disulfide transfer to the precursor while both oxidase and precursor are associated with the disulfide carrier Mia40.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号