首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin (IL) 15 is an inflammatory cytokine that plays an essential role in the activation, proliferation, and maintenance of specific natural killer cell and T-cell populations, and has been implicated as a mediator of inflammatory diseases. An anti-IL-15 antibody that blocked IL-15-dependent cellular responses was isolated by phage display and optimised via mutagenesis of the third complementarity-determining regions (CDRs) of variable heavy (VH) and variable light chains. Entire repertoires of improved variants were recombined with each other to explore the maximum potential sequence space. DISC0280, the most potent antibody isolated using this comprehensive strategy, exhibits a 228-fold increase in affinity and a striking 40,000-fold increase in cellular potency compared to its parent. Such a wholesale recombination strategy therefore represents a useful method for exploiting synergistic potency gains as part of future antibody engineering efforts. The crystal structure of DISC0280 Fab (fragment antigen binding), in complex with human IL-15, was determined in order to map the structural epitope and paratope. The most remarkable feature revealed lies within the paratope and is a novel six-amino-acid α-helix that sits within the VH CDR3 loop at the center of the antigen binding site. This is the first report to describe an α-helix as a principal component of a naturally derived VH CDR3 following affinity maturation.  相似文献   

2.
Mycobacteria are major human pathogens responsible for such serious and widespread diseases as tuberculosis and leprosy. Among the evolutionary adaptations essential for pathogenicity in mycobacteria is a complex carbohydrate-rich cell-wall structure that contains as a major immunomodulatory molecule the polysaccharide lipoarabinomannan (LAM). We report here crystal structures of three fragments from the non-reducing termini of LAM in complex with a murine antibody Fab fragment (CS-35Fab). These structures reveal for the first time the three-dimensional structures of key components of LAM and the molecular basis of LAM recognition at between 1.8- and 2.0-Å resolution. The antigen-binding site of CS-35Fab forms three binding pockets that show a high degree of complementarity to the reducing end, the branch point and one of the non-reducing ends of the Y-shaped hexasaccharide moiety found at most of the non-reducing termini of LAM. Structures of CS-35Fab bound to two additional tetrasaccharides confirm the general mode of binding seen in the hexasaccharide and indicate how different parts of LAM are recognized. Altogether, these structures provide a rational basis for understanding the overall architecture of LAM and identify the key elements of an epitope that may be exploited for the development of novel and more effective anti-mycobacterial vaccines. Moreover, this study represents the first high-resolution X-ray crystallographic investigation of oligofuranoside-protein recognition.  相似文献   

3.
Understanding the structural basis of recognition between antigen and antibody requires the structural comparison of free and complexed components. Previously, we have reported the crystal structure of the complex between Fab fragment of murine monoclonal antibody 2A8 (Fab2A8) and Plasmodium vivax P25 protein (Pvs25) at 3.2 Å resolution. We report here the crystallization and X-ray structure of native Fab2A8 at 4.0 Å resolution. The 2A8 antibody generated against Pvs25 prevents the formation of P. vivax oocysts in the mosquito, when assayed in membrane feeding experiment.Comparison of native Fab2A8 structure with antigen bound Fab2A8 structure indicates the significant conformational changes in CDR-H1 and CDR-H3 regions of VH domain and CDR-L3 region of VL domain of Fab2A8. Upon complex formation, the relative orientation between VL and VH domains of Fab2A8 is conserved, while significant differences are observed in elbow angles of heavy and light chains. The combing site residues of complexed Fab2A8 exhibited the reduced temperature factor compared to native Fab2A8, suggesting a loss of conformational entropy upon antigen binding.  相似文献   

4.
Interleukin-1β (IL-1β) plays a key role in autoinflammatory diseases, such as systemic juvenile idiopathic arthritis (sJIA) or cryopyrin-associated periodic syndrome (CAPS). Canakinumab, a human monoclonal anti-IL-1β antibody, was recently approved for human use under the brand name Ilaris®. Canakinumab does not cross-react with IL-1β from mouse, rat, rabbit, or macaques. The crystal structure of the canakinumab Fab bound to human IL-1β was determined in an attempt to rationalize the species specificity. The X-ray analysis reveals a complex surface epitope with an intricate network of well-ordered water molecules at the antibody-antigen interface. The canakinumab paratope is largely pre-organized, as demonstrated by the structure determination of the free Fab. Glu 64 of human IL-1β is a pivotal epitope residue explaining the exquisite species specificity of canakinumab. We identified marmoset as the only non-human primate species that carries Glu 64 in its IL-1β and demonstrates full cross-reactivity of canakinumab, thereby enabling toxicological studies in this species. As demonstrated by the X-ray structure of the complex with IL-1β, canakinumab binds IL-1β on the opposite side with respect to the IL-1RAcP binding site, and in an approximately orthogonal orientation with respect to IL-1RI. However, the antibody and IL-1RI binding sites slightly overlap and the VH region of canakinumab would sterically interfere with the D1 domain of IL-1RI, as shown by a structural overlay with the IL-1β:IL-1RI complex. Therefore, direct competition with IL-1RI for IL-1β binding is the molecular mechanism of neutralization by canakinumab, which is also confirmed by competition assays with recombinant IL-1RI and IL-1RII.  相似文献   

5.
The somatic mutations accumulated in variable and framework regions of antibodies produce structural changes that increase the affinity towards the antigen. This implies conformational and non covalent bonding changes at the paratope, as well as possible quaternary structure changes and rearrangements at the VH-VL interface. The consequences of the affinity maturation on the stability of the Fv domain were studied in a system composed of two closely related antibodies, F10.6.6 and D44.1, which recognize the same hen egg-white lysozyme (HEL) epitope. The mAb F10.6.6 has an affinity constant 700 times higher than D44.1, due to a higher surface complementarity to HEL. The structure of the free form of the Fab F10.6.6 presented here allows a comparative study of the conformational changes produced upon binding to antigen. By means of structural comparison, kinetics and thermodynamics of binding and stability studies on Fab and Fv fragments of both antibodies, we have determined that the affinity maturation process of anti-protein antibodies affects the shape of the combining site and the secondary structure content of the variable domain, stabilizes the VH-VL interaction, and consequently produces an increase of the Fv domain stability, improving the binding to antigen.  相似文献   

6.
The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 A resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining complementary experimental approaches in analyzing the antigenic and immunogenic properties of putative molecular mimics.  相似文献   

7.
Engineered antibody paratopes with limited sequence diversity permit assessment of the roles played by different amino acid side chains in creating the high-affinity, high-specificity interactions characteristic of antibodies. We describe a paratope raised against the human ErbB family member HER2, using a binary diversity tryptophan/serine library displayed on phage. Fab37 binds to the extracellular domain of HER2 with sub-nanomolar affinity. An X-ray structure at 3.2 Å resolution reveals a contact paratope composed almost entirely of tryptophan and serine residues. Mutagenesis experiments reveal which of these side chains are more important for direct antigen interactions and which are more important for conformational flexibility. The crystal lattice contains an unprecedented trimeric arrangement of HER2 closely related to previously observed homodimers of the related epidermal growth factor receptor.  相似文献   

8.
《MABS-AUSTIN》2013,5(6):1151-1160
Interleukin-1β (IL-1β) plays a key role in autoinflammatory diseases, such as systemic juvenile idiopathic arthritis (sJIA) or cryopyrin-associated periodic syndrome (CAPS). Canakinumab, a human monoclonal anti-IL-1β antibody, was recently approved for human use under the brand name Ilaris®. Canakinumab does not cross-react with IL-1β from mouse, rat, rabbit, or macaques. The crystal structure of the canakinumab Fab bound to human IL-1β was determined in an attempt to rationalize the species specificity. The X-ray analysis reveals a complex surface epitope with an intricate network of well-ordered water molecules at the antibody-antigen interface. The canakinumab paratope is largely pre-organized, as demonstrated by the structure determination of the free Fab. Glu 64 of human IL-1β is a pivotal epitope residue explaining the exquisite species specificity of canakinumab. We identified marmoset as the only non-human primate species that carries Glu 64 in its IL-1β and demonstrates full cross-reactivity of canakinumab, thereby enabling toxicological studies in this species. As demonstrated by the X-ray structure of the complex with IL-1β, canakinumab binds IL-1β on the opposite side with respect to the IL-1RAcP binding site, and in an approximately orthogonal orientation with respect to IL-1RI. However, the antibody and IL-1RI binding sites slightly overlap and the VH region of canakinumab would sterically interfere with the D1 domain of IL-1RI, as shown by a structural overlay with the IL-1β:IL-1RI complex. Therefore, direct competition with IL-1RI for IL-1β binding is the molecular mechanism of neutralization by canakinumab, which is also confirmed by competition assays with recombinant IL-1RI and IL-1RII.  相似文献   

9.
Antibody Z13e1 is a relatively broadly neutralizing anti-human immunodeficiency virus type 1 antibody that recognizes the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Based on the crystal structure of an MPER epitope peptide in complex with Z13e1 Fab, we identified an unrelated protein, interleukin (IL)-22, with a surface-exposed region that is structurally homologous in its backbone to the gp41 Z13e1 epitope. By grafting the gp41 Z13e1 epitope sequence onto the structurally homologous region in IL-22, we engineered a novel protein (Z13-IL22-2) that contains the MPER epitope sequence for use as a potential immunogen and as a reagent for the detection of Z13e1-like antibodies. The Z13-IL22-2 protein binds Fab Z13e1 with a Kd of 73 nM. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is faithfully replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, leaving open the question of whether conformational changes upon binding occur in the Fab, in Z13-IL-22, or in both.  相似文献   

10.
The recently identified interleukin-17 (IL-17) cytokines family, which comprises six members in mammals (IL-17A-F), plays essential roles in the host immunity against infectious diseases and chronic inflammatory diseases. The three-dimensional structures containing IL-17A or IL-17F have become available and revealed the unique structural features of IL-17s as well as their receptors. Molecular modeling in this review shows that IL-17s may adopt a “cysteine knot” fold commonly seen in nerve growth factor (NGF) and other neurotrophins. Further modeling analysis unmasks a signature interaction feature of the IL-17F/IL-17RA complex, where a small loop of IL-17RA slots into the deep groove of the interface of IL-17F homodimer. This is quite different from the interaction between the best known four-helix cytokines and their cognate receptors. On the other hand, structure of IL-17A and its monoclonal antibody (CAT-2200) shows that, albeit that the antigenic epitope of IL-17A resides outside of the IL-17A homodimer interface, its physical proximity to the receptor binding groove may explain that antibody blockage would be achieved by interfering with the ligand-receptor interaction. This review is to summarize the advance in understanding the structure and function of IL-17 family cytokines, focusing mainly on IL-17A, IL-17F and IL-17E, in the hope of gaining better knowledge of immunotherapeutic strategies against various inflammatory diseases.  相似文献   

11.
The human monoclonal antibody Fab X5 neutralizes a broad range of HIV-1 primary isolates. The crystal structure of X5 has been determined at 1.9 A resolution. There are two crystallographically independent Fab fragments in the asymmetric unit. The crystallographic R value for the final model is 0.22. The antibody-combining site features a long (22 amino acid residues) CDR H3 with a protruding hook-shaped motif. The X5 structure and site-directed mutagenesis data suggest that X5 amino acid residues W100 and Y100F in the CDR H3 motif may be critical for the binding of Fab X5 to gp120. X5 bound to a complex of a CD4 mimetic and gp120 with approximately the same kinetics and affinity as to a CD4-gp120 complex, suggesting that specific interactions between CD4 and X5 are unlikely to contribute to the binding of X5 to gp120-CD4 complexes. Binding of X5 to alanine scanning mutants of gp120JR-CSF complexed with CD4 suggested a critical role of the highly conserved amino acid residues at positions 423 and 432. The X5 structure and fine mapping of its epitope may assist in the elucidation of the mechanisms of viral entry and neutralization, and the development of HIV-1 inhibitors and vaccines.  相似文献   

12.
13F6-1-2 is a murine monoclonal antibody that recognizes the heavily glycosylated mucin-like domain of the Ebola virus virion-attached glycoprotein (GP) and protects animals against lethal viral challenge. Here we present the crystal structure, at 2.0 Å, of 13F6-1-2 in complex with its Ebola virus GP peptide epitope. The GP peptide binds in an extended conformation, anchored primarily by interactions with the heavy chain. Two GP residues, Gln P406 and Arg P409, make extensive side-chain hydrogen bond and electrostatic interactions with the antibody and are likely critical for recognition and affinity. The 13F6-1-2 antibody utilizes a rare Vλx light chain. The three light-chain complementarity-determining regions do not adopt canonical conformations and represent new classes of structures distinct from Vκ and other Vλ light chains. In addition, although Vλx had been thought to confer specificity, all light-chain contacts are mediated through germ-line-encoded residues. This structure of an antibody that protects against the Ebola virus now provides a framework for humanization and development of a postexposure immunotherapeutic.  相似文献   

13.
Single-domain antibodies (sdAbs), the autonomous variable domains of heavy chain-only antibodies produced naturally by camelid ungulates and cartilaginous fishes, have evolved to bind antigen using only three complementarity-determining region (CDR) loops rather than the six present in conventional VH:VL antibodies. It has been suggested, based on limited evidence, that sdAbs may adopt paratope structures that predispose them to preferential recognition of recessed protein epitopes, but poor or non-recognition of protuberant epitopes and small molecules. Here, we comprehensively surveyed the evidence in support of this hypothesis. We found some support for a global structural difference in the paratope shapes of sdAbs compared with those of conventional antibodies: sdAb paratopes have smaller molecular surface areas and diameters, more commonly have non-canonical CDR1 and CDR2 structures, and have elongated CDR3 length distributions, but have similar amino acid compositions and are no more extended (interatomic distance measured from CDR base to tip) than conventional antibody paratopes. Comparison of X-ray crystal structures of sdAbs and conventional antibodies in complex with cognate antigens showed that sdAbs and conventional antibodies bury similar solvent-exposed surface areas on proteins and form similar types of non-covalent interactions, although these are more concentrated in the compact sdAb paratope. Thus, sdAbs likely have privileged access to distinct antigenic regions on proteins, but only owing to their small molecular size and not to general differences in molecular recognition mechanism. The evidence surrounding the purported inability of sdAbs to bind small molecules was less clear. The available data provide a structural framework for understanding the evolutionary emergence and function of autonomous heavy chain-only antibodies.  相似文献   

14.
Interleukin (IL)-12 and IL-23 are heterodimeric proinflammatory cytokines that share a common p40 subunit, paired with p35 and p19 subunits, respectively. They represent an attractive class of therapeutic targets for the treatment of psoriasis and other immune-mediated diseases. Ustekinumab is a fully human monoclonal antibody (mAb) that binds specifically to IL-12/IL-23p40 and neutralizes human IL-12 and IL-23 bioactivity. The crystal structure of ustekinumab Fab (antigen binding fragment of mAb), in complex with human IL-12, has been determined by X-ray crystallography at 3.0 Å resolution. Ustekinumab Fab binds the D1 domain of the p40 subunit in a 1:1 ratio in the crystal, consistent with a 2 cytokines:1 mAb stoichiometry, as measured by isothermal titration calorimetry. The structure indicates that ustekinumab binds to the same epitope on p40 in both IL-12 and IL-23 with identical interactions. Mutational analyses confirm that several residues identified in the IL-12/IL-23p40 epitope provide important molecular binding interactions with ustekinumab. The electrostatic complementarity between the mAb antigen binding site and the p40 D1 domain epitope appears to play a key role in antibody/antigen recognition specificity. Interestingly, this structure also reveals significant structural differences in the p35 subunit and p35/p40 interface, compared with the published crystal structure of human IL-12, suggesting unusual and potentially functionally relevant structural flexibility of p35, as well as p40/p35 recognition. Collectively, these data describe unique observations about IL-12p35 and ustekinumab interactions with p40 that account for its dual binding and neutralization of IL-12 and IL-23.  相似文献   

15.
GD3-replica peptides were obtained from a phage peptide library and an anti-GD3 monoclonal antibody (Mab) (4F6), and anti-GD3 Mabs were generated by immunizing a peptide GD3P4. A Mab, 3D2 was found to recognize GD3 by immunohistochemical approaches. Amino acid analysis of heavy and light chain variable regions of 4F6 and 3D2 showed that the respective chains had the same length, and only a few different amino acid substitutions were found. The present data indicate that the immunogenic GD3P4 is processed in a certain size and exposed on the antigen-presenting cells with a molecular shape quite similar to that of the GD3 epitope in 4F6.  相似文献   

16.
The human monoclonal antibody 2F5 neutralizes primary human immunodeficiency virus type 1 (HIV-1) with rare breadth and potency. A crystal structure of a complex of 2F5 and a peptide corresponding to its core epitope on gp41, ELDKWAS, revealed that the peptide interacts with residues at the base of the unusually long (22-residue) third complementarity-determining region of the heavy chain (CDR H3) but not the apex. Here, we perform alanine-scanning mutagenesis across CDR H3 and make additional substitutions of selected residues to map the paratope of Fab 2F5. Substitution of residues from the base of the H3 loop or from CDRs H1, H2, and L3, which are proximal to the peptide, significantly diminished the affinity of Fab 2F5 for gp41 and a short peptide containing the 2F5 core motif. However, nonconservative substitutions to a phenylalanine residue at the apex of the H3 loop also markedly decreased 2F5 binding to both gp41 and the peptide, suggesting that recognition of the core epitope is crucially dependent on features at the apex of the H3 loop. Furthermore, substitution at the apex of the H3 loop had an even more pronounced effect on the neutralizing activity of 2F5 against three sensitive HIV-1. These observations present a challenge to vaccine strategies based on peptide mimics of the linear epitope.  相似文献   

17.
Interleukin-22 (IL-22) is a member of the interleukin-10 cytokine family, which is involved in anti-microbial defenses, tissue damage protection and repair, and acute phase responses. Its signaling mechanism involves the sequential binding of IL-22 to interleukin-22 receptor 1 (IL-22R1), and of this dimer to interleukin-10 receptor 2 (IL-10R2) extracellular domain. We report a 1.9A crystal structure of the IL-22/IL-22R1 complex, revealing crucial interacting residues at the IL-22/IL-22R1 interface. Functional importance of key residues was confirmed by site-directed mutagenesis and functional studies. Based on the X-ray structure of the binary complex, we discuss a molecular basis of the IL-22/IL-22R1 recognition by IL-10R2. STRUCTURED SUMMARY:  相似文献   

18.
Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies.” One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose-binding protein. The YSX monobody bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution X-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces.  相似文献   

19.
The structure of a complex of the anti-cholera toxin antibody TE33 Fab (fragment antibody) with the D-peptide vpGsqhyds was solved to 1.78 A resolution. The D-peptide was derived from the linear L-peptide epitope VPGSQHIDS by a stepwise transformation. Despite the very similar amino acid sequence-the only difference is a tyrosine residue in position 7-there are marked differences in the individual positions with respect to their contribution to the peptide overall affinity as ascertained by a complete substitutional analysis. This is reflected by the X-ray structure of the TE33 Fab/D-peptide complex where there is an inverted orientation of the D-peptide as compared with the known structure of a corresponding complex containing the epitope L-peptide, with the side chains establishing different contacts within the binding site of TE33. The D- and L-peptide affinities are comparable and the surface areas buried by complex formation are almost the same. Thus the antibody TE33 provides a typical example for polyspecific binding behavior of IgG family antibodies.  相似文献   

20.
Anifrolumab (anifrolumab) is an antagonist human monoclonal antibody that targets interferon α receptor 1 (IFNAR1). Anifrolumab has been developed to treat autoimmune diseases and is currently in clinical trials. To decipher the molecular basis of its mechanism of action, we engaged in multiple epitope mapping approaches to determine how it interacts with IFNAR1 and antagonizes the receptor. We identified the epitope of anifrolumab using enzymatic fragmentation, phage-peptide library panning and mutagenesis approaches. Our studies revealed that anifrolumab recognizes the SD3 subdomain of IFNAR1 with the critical residue R279. Further, we solved the crystal structure of anifrolumab Fab to a resolution of 2.3 Å. Guided by our epitope mapping studies, we then used in silico protein docking of the anifrolumab Fab crystal structure to IFNAR1 and characterized the corresponding mode of binding. We find that anifrolumab sterically inhibits the binding of IFN ligands to IFNAR1, thus blocking the formation of the ternary IFN/IFNAR1/IFNAR2 signaling complex. This report provides the molecular basis for the mechanism of action of anifrolumab and may provide insights toward designing antibody therapies against IFNAR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号