首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the “off” and “on” allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.  相似文献   

2.
3.
4.
Heng Li 《BBA》2006,1757(11):1512-1519
The state transition in cyanobacteria is a long-discussed topic of how the photosynthetic machine regulates the excitation energy distribution in balance between the two photosystems. In the current work, whether the state transition is realized by “mobile phycobilisome (PBS)” or “energy spillover” has been clearly answered by monitoring the spectral responses of the intact cells of the cyanobacterium Spirulina platensis. Firstly, light-induced state transition depends completely on a movement of PBSs toward PSI or PSII while the redox-induced one on not only the “mobile PBS” but also an “energy spillover”. Secondly, the “energy spillover” is triggered by dissociation of PSI trimers into the monomers which specially occurs under a case from light to dark, while the PSI monomers will re-aggregate into the trimers under a case from dark to light, i.e., the PSI oligomerization is reversibly regulated by light switch on and off. Thirdly, PSI oligomerization is regulated by the local H+ concentration on the cytosol side of the thylakoid membranes, which in turn is regulated by light switch on and off. Fourthly, PSI oligomerization change is the only mechanism for the “energy spillover”. Thus, it can be concluded that the “mobile PBS” is a common rule for light-induced state transition while the “energy spillover” is only a special case when dark condition is involved.  相似文献   

5.
6.
We have examined the folding ensembles present in solution for a series of RNA oligonucleotides that encompass the replicase translational operator stem-loop of the RNA bacteriophage MS2. Single-molecule (SM) fluorescence assays suggest that these RNAs exist in solution as ensembles of differentially base-paired/base-stacked states at equilibrium. There are two distinct ensembles for the wild-type sequence, implying the existence of a significant free energy barrier between “folded” and “unfolded” ensembles. Experiments with sequence variants are consistent with an unfolding mechanism in which interruptions to base-paired duplexes, in this example by the single-stranded loop and a single-base bulge in the base-paired stem, as well as the free ends, act as nucleation points for unfolding. The switch between folded and unfolded ensembles is consistent with a transition that occurs when all base-pairing and/or base-stacking interactions that would orientate the legs of the RNA stem are broken. Strikingly, a U-to-C replacement of a residue in the loop, which creates a high-affinity form of the operator for coat protein binding, results in dramatically different (un)folding behaviour, revealing distinct subpopulations that are either stabilised or destabilised with respect to the wild-type sequence. This result suggests additional reasons for selection against the C-variant stem-loop in vivo and provides an explanation for the increased affinity.  相似文献   

7.
8.
An allosteric ribozyme that requires two different effectors to induce catalysis was created using modular rational design. This ribozyme construct comprises five conjoined RNA modules that operate in concert as an obligate FMN- and theophylline-dependent molecular switch. When both effectors are present, this 'binary' RNA switch self-cleaves with a rate enhancement of approximately 300-fold over the rate observed in the absence of effectors. Kinetic and structural studies implicate a switching mechanism wherein FMN binding induces formation of the active ribozyme conformation. However, the binding site for FMN is rendered inactive unless theophylline first binds to its corresponding site and reorganizes the RNA structure. This example of cooperative binding between allosteric effectors reveals a level of structural and functional complexity for RNA that is similar to that observed with allosteric proteins.  相似文献   

9.
The inhibitory switch (IS) domain of p21-activated kinase 1 (PAK1) stabilizes full-length PAK1 in an inactive conformation by binding to the PAK1 kinase domain. Competitive binding of small guanosine triphosphatases to the IS domain disrupts the autoinhibitory interactions and exposes the IS domain binding site on the surface of the kinase domain. To build an affinity reagent that selectively binds the activated state of PAK1, we used molecular modeling to reengineer the isolated IS domain so that it was soluble and stable, did not bind to guanosine triphosphatases and bound more tightly to the PAK1 kinase domain. Three design strategies were tested: in the first and second cases, extension and redesign of the N-terminus were used to expand the hydrophobic core of the domain, and in the third case, the termini were redesigned to be adjacent in space so that the domain could be stabilized by insertion into a loop in a host cyan fluorescent protein (CFP). The best-performing design, called CFP-PAcKer, was based on the third strategy and bound the kinase domain of PAK1 with an affinity of 400 nM. CFP-PAcKer binds more tightly to a full-length variant of PAK1 that is stabilized in the “open” state (Kd = 3.3 μM) than to full-length PAK1 in the “closed” state (undetectable affinity), and binding can be monitored with fluorescence by placing an environmentally sensitive fluorescence dye on CFP-PAcKer adjacent to the binding site.  相似文献   

10.
Ribosomes exist as a heterogenous pool of macromolecular complexes composed of ribosomal RNA molecules, ribosomal proteins, and numerous associated “nonribosomal” proteins. To identify nonribosomal proteins that may modulate ribosome activity, we examined the composition of translationally active and inactive ribosomes using a proteomic multidimensional protein identification technology. Notably, the phosphorylated isoform of glycogen synthase, glycogen synthase 1 (GYS1), was preferentially associated with elongating ribosomes. Depletion of GYS1 affected the translation of a subset of cellular mRNAs, some of which encode proteins that modulate protein biosynthesis. These findings argue that GYS1 abundance, by virtue of its ribosomal association, provides a feedback loop between the energy state of the cells and the translation machinery.  相似文献   

11.
The mechanism whereby RNA is translocated by the single subunit viral RNA-dependent RNA polymerases is not yet understood. These enzymes lack homologs of the “O-helix” structures and associated fingers domain movements thought to be responsible for translocation in many DNA-templated polymerases. The structures of multiple picornavirus polymerase elongation complexes suggest that these enzymes use a different molecular mechanism where translocation is not strongly coupled to the opening of the active site following catalysis. Here we present the 2.0- to 2.6-Å-resolution crystal structures and biochemical data for 12 poliovirus polymerase mutants that together show how proper enzyme functions and translocation activity requires conformational flexibility of a loop sequence in the palm domain B-motif. Within the loop, the Ser288-Gly289-Cys290 sequence is shown to play a major role in the catalytic cycle based on RNA binding, processive elongation activity, and single nucleotide incorporation assays. The structures show that Ser288 forms a key hydrogen bond with Asp238, the backbone flexibility of Gly289 is required for translocation competency, and Cys290 modulates the overall elongation activity of the enzyme. Some conformations of the loop represent likely intermediates on the way to forming the catalytically competent closed active site, while others are consistent with a role in promoting translocation of the nascent base pair out of the active site. The loop structure and key residues surrounding it are highly conserved, suggesting that the structural dynamics we observe in poliovirus 3Dpol are a common feature of viral RNA-dependent RNA polymerases.  相似文献   

12.
13.
14.
Protein sequestration occurs when an active protein is sequestered by a repressor into an inactive complex. Using mathematical and computational modeling, we show how this regulatory mechanism (called “molecular titration”) can generate ultrasensitive or “all-or-none” responses that are equivalent to highly cooperative processes. The ultrasensitive nature of the input-output response is mainly determined by two parameters: the dimer dissociation constant and the repressor concentration. Because in vivo concentrations are tunable through a variety of mechanisms, molecular titration represents a flexible mechanism for generating ultrasensitivity. Using physiological parameters, we report how details of in vivo protein degradation affect the strength of the ultrasensitivity at steady state. Given that developmental systems often transduce signals into cell-fate decisions on timescales incompatible with steady state, we further examine whether molecular titration can produce ultrasensitive responses within physiologically relevant time intervals. Using Drosophila somatic sex determination as a developmental paradigm, we demonstrate that molecular titration can generate ultrasensitivity on timescales compatible with most cell-fate decisions. Gene duplication followed by loss-of-function mutations can create dominant negatives that titrate and compete with the original protein. Dominant negatives are abundant in gene regulatory circuits, and our results suggest that molecular titration might be generating an ultrasensitive response in these networks.  相似文献   

15.
16.
17.
18.
19.
20.
Biochemical and structural studies of yeast Vps4 oligomerization   总被引:1,自引:0,他引:1  
The ESCRT (endosomal sorting complexes required for transport) pathway functions in vesicle formation at the multivesicular body, the budding of enveloped RNA viruses such as HIV-1, and the final abscission stage of cytokinesis. As the only known enzyme in the ESCRT pathway, the AAA ATPase (ATPase associated with diverse cellular activities) Vps4 provides the energy required for multiple rounds of vesicle formation. Like other Vps4 proteins, yeast Vps4 cycles through two states: a catalytically inactive disassembled state that we show here is a dimer and a catalytically active higher-order assembly that we have modeled as a dodecamer composed of two stacked hexameric rings. We also report crystal structures of yeast Vps4 proteins in the apo- and ATPγS [adenosine 5′-O-(3-thiotriphosphate)]-bound states. In both cases, Vps4 subunits assembled into continuous helices with 6-fold screw axes that are analogous to helices seen previously in other Vps4 crystal forms. The helices are stabilized by extensive interactions between the large and small AAA ATPase domains of adjacent Vps4 subunits, suggesting that these contact surfaces may be used to build both the catalytically active dodecamer and catalytically inactive dimer. Consistent with this model, we have identified interface mutants that specifically inhibit Vps4 dimerization, dodecamerization, or both. Thus, the Vps4 dimer and dodecamer likely form distinct but overlapping interfaces. Finally, our structural studies have allowed us to model the conformation of a conserved loop (pore loop 2) that is predicted to form an arginine-rich pore at the center of one of the Vps4 hexameric rings. Our mutational analyses demonstrate that pore loop 2 residues Arg241 and Arg251 are required for efficient HIV-1 budding, thereby supporting a role for this “arginine collar” in Vps4 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号