首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
FliS chaperone binds to flagellin FliC in the cytoplasm and transfers FliC to a sorting platform of the flagellar type III export apparatus through the interaction between FliS and FlhA for rapid and efficient protein export during flagellar filament assembly. FliS also suppresses the secretion of an anti‐σ factor, FlgM. Loss of FliS results in a short filament phenotype although the expression levels of FliC are increased considerably due to an increase in the secretion level of FlgM. Here to clarify the rate limiting step of FliC export in the absence of FliS, we isolated bypass mutants from a Salmonella ΔfliS mutant. All the bypass mutations were identified in FliC. These bypass mutations increased the export rate of FliC by ca. twofold, allowing the bypass mutant cells to produce longer filaments than the parental ΔfliS cells. Both far‐UV CD measurements and limited proteolysis revealed that the bypass mutations significantly destabilize the folded structure of FliC monomer. These results suggest that an unfolding step of FliC limits the export rate of FliC in the ΔfliS mutant, thereby producing short filaments. We propose that FliS promotes FliC docking at the FlhA platform to facilitate subsequent unfolding of FliC.  相似文献   

5.
6.
Pseudomonas aeruginosa is one of leading opportunistic pathogens in humans and its movement is driven by a flagellar filament that is constituted through the polymerization of a single protein, FliC flagellin (paFliC). paFliC is an essential virulence factor for the colonization of P. aeruginosa. paFliC activates innate immune responses via its recognition by Toll-like receptor 5 (TLR5) and adaptive immunity in the host. Thus, paFliC has been a vaccine candidate to prevent P. aeruginosa infection, particularly for cystic fibrosis patients. To provide structural information on paFliC and its flagellar filament, we have determined the crystal structure of paFliC, which contains the conserved D1 and variable D2 domains, at 2.1 Å resolution. As observed for Salmonella FliC, the paFliC D1 domain is folded into a rod-shaped structure, and paFliC was demonstrated by gel filtration and native PAGE analyses to directly interact with TLR5. Moreover, a structural model of the paFliC-TLR5 complex suggests that paFliC D1 would provide major TLR5-binding sites, similar to Salmonella FliC. In contrast to the D1 domain, the paFliC D2 domain exhibits a unique structure of two β-sheets and one α-helix that has not been found in other flagellins. An in silico construction of a flagellar filament based on the packing of paFliC in the crystal suggests that the D2 domain would be exposed to solution and could play an important role in immunogenicity. Our biophysical and structure-based modeling study on paFliC, the paFliC-TLR5 complex, and the paFliC filament could contribute to the improvement of vaccine design to control P. aeruginosa infection.  相似文献   

7.
Bacterial flagellin is a surface protein with numerous advantages for the presentation of exogenous peptides. However, the production of recombinant bacteria and the expression of fusion proteins is laborious and time consuming. Here, we present a simple way to produce modified bacteria. Partially deleted, non-functional, chromosomal flagellin gene (fliC ) was changed using homologous recombination by a functional linear fliC gene in which we introduced an exogenous oligonucleotide encoding for the peptide of interest. The modified fliC gene was produced by polymerase chain amplification. Linear amplicons were introduced into the non-motile E. coli by electroporation. The formation of functional flagellar filaments allowed the discrimination of motile transformants from non-motile, non-transformed cells. Thus antibiotic selection and gene expression inductors are not required since transformed bacteria can be easily isolated and used as a vector and adjuvant for immunization. To validate this hypothesis, we studied the immune response against the N-terminal peptide of Clostridium tyrobutyricum flagellin fragment. BALB/c mice were immunized either with the protein displayed as flagellin fusion protein on the surface of E. coli, with the recombinant protein in Freund's adjuvant (FA), or with the pcDNA3 vector bearing the DNA fragment encoding this protein. Immunization with the flagellin recombinant bacteria induced a strong Th1 response as measured by high level of IFN-gamma production and the lack of IL-4 production. The results indicate that the flagellar filament protein carrying a specific epitope can be a potent inducer of the Th1 cellular response.  相似文献   

8.
Bacterial H antigens are specified by flagellin molecules, which constitute the flagellar filament. Escherichia coli 781-55 and E2987-73 are the type strains for H44 and H55 antigens, respectively. Unlike E. coli K-12, they possess two flagellin genes, fliC and fllA, on their chromosomes. However, they are monophasic, expressing exclusively the fllA genes, which specify the type antigens. In this study, the flagellin genes were cloned from these strains and their structure and expression were analyzed. It was found that the fliC genes encode apparently intact flagellin subunits but possess inefficient sigma28-dependent promoters, which may result in these genes being silent. The chromosomal locations of the fllA genes are approximately, but not exactly, identical with that of the phase-2 flagellin gene, fljB, of diphasic Salmonella strains. However, unlike the Salmonella fljB gene, the invertible H segment and the fljA gene responsible for the control of flagellar phase variation are both absent from the fllA loci. The fllA genes are highly homologous to the E. coli fliC gene but distantly related to the Salmonella fljB gene. These results suggest a hypothesis that the fllA genes may have emerged by an intra-species lateral transfer of the fliC gene. This hypothesis is further supported by the observation that the fllA genes are flanked by several IS elements and located within cryptic prophage elements.  相似文献   

9.
The genome of a halophilic archaeon Haloarcula marismortui carries two flagellin genes, flaA2 and flaB. Previously, we demonstrated that the helical flagellar filaments of H. marismortui were composed primarily of flagellin FlaB molecules, while the other flagellin (FlaA2) was present in minor amounts. Mutant H. marismortui strains with either flagellin gene inactivated were obtained. It was shown that inactivation of the flaA2 gene did not lead to changes in cell motility and helicity of the filaments, while the cells with inactivated flaB lost their motility and flagella synthesis was stopped. Two FlaB flagellin forms having different sensitivities to proteolysis were found in the flagellar filament structure. It is speculated that these flagellin forms may ensure the helical filament formation. Moreover, the flagella of a psychrotrophic haloarchaeon Halorubrum lacusprofundi were isolated and characterized for the first time. H. lacusprofundi filaments were helical and exhibited morphological polymorphism, although the genome contained a single flagellin gene. These results suggest that the mechanisms of flagellar helicity may differ in different halophilic archaea, and sometimes the presence of two flagellin genes, in contrast to Halobacterium salinarum, is not necessary for the formation of a functional helical flagellum.  相似文献   

10.
The flagellum is a sophisticated nanomachine and an important virulence factor of many pathogenic bacteria. Flagellar motility enables directed movements towards host cells in a chemotactic process, and near‐surface swimming on cell surfaces is crucial for selection of permissive entry sites. The long external flagellar filament is made of tens of thousands subunits of a single protein, flagellin, and many Salmonella serovars alternate expression of antigenically distinct flagellin proteins, FliC and FljB. However, the role of the different flagellin variants during gut colonisation and host cell invasion remains elusive. Here, we demonstrate that flagella made of different flagellin variants display structural differences and affect Salmonella's swimming behaviour on host cell surfaces. We observed a distinct advantage of bacteria expressing FliC‐flagella to identify target sites on host cell surfaces and to invade epithelial cells. FliC‐expressing bacteria outcompeted FljB‐expressing bacteria for intestinal tissue colonisation in the gastroenteritis and typhoid murine infection models. Intracellular survival and responses of the host immune system were not altered. We conclude that structural properties of flagella modulate the swimming behaviour on host cell surfaces, which facilitates the search for invasion sites and might constitute a general mechanism for productive host cell invasion of flagellated bacteria.  相似文献   

11.
Flagellar filament self‐assembles from the component protein, flagellin or FliC, with the aid of the capping protein, HAP2 or FliD. Depending on the helical parameters of filaments, flagella from various species are divided into three groups, family I, II, and III. Each family coincides with the traditional classification of flagella, peritrichous flagella, polar flagella, and lateral flagella, respectively. To elucidate the physico‐chemical properties of flagellin to separate families, we chose family I flagella and family II flagella and examined how well the exchangeability of a combination of FliC and/or FliD from different families is kept in filament formation. FliC or FliD of Salmonella enterica serovar Typhimurium (Salty; family I) were exchanged with those of Escherichia coli (Escco; family I) or Pseudomonas aeruginosa (Pseae; family II). In a Salty fliC deletion mutant, Escco FliC formed short filaments, but Pseae FliC did not form filaments. In a Salty fliD deletion mutant, both Escco FliD and Pseae FliD allowed Salty FliC to polymerize into short filaments. In conclusion, FliC can be exchanged among the same family but not between different families, while FliD serves as the cap protein even in different families, confirming that FliC is essential for determining families, but FliD plays a subsidiary role in filament formation. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
In this study, intact flagellin proteins were purified from strains of Clostridium difficile and analyzed using quadrupole time of flight and linear ion trap mass spectrometers. Top-down studies showed the flagellin proteins to have a mass greater than that predicted from the corresponding gene sequence. These top-down studies revealed marker ions characteristic of glycan modifications. Additionally, diversity in the observed masses of glycan modifications was seen between strains. Electron transfer dissociation mass spectrometry was used to demonstrate that the glycan was attached to the flagellin protein backbone in O linkage via a HexNAc residue in all strains examined. Bioinformatic analysis of C. difficile genomes revealed diversity with respect to glycan biosynthesis gene content within the flagellar biosynthesis locus, likely reflected by the observed flagellar glycan diversity. In C. difficile strain 630, insertional inactivation of a glycosyltransferase gene (CD0240) present in all sequenced genomes resulted in an inability to produce flagellar filaments at the cell surface and only minor amounts of unmodified flagellin protein.Clostridium difficile, a gram-positive, anaerobic, spore-forming bacterium, is an emerging opportunistic pathogen and the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans. The recent emergence of the hypervirulent NAP1/027 strain in hospitals of North America has resulted in increased mortality rates (18, 19). While previous reports of C. difficile epidemics were restricted to single institutions or wards, more recently, there appears to be a wider distribution of outbreaks (20), accompanied by increasing severity of disease as well as a significant increase in the numbers of case fatalities reported (21). The pathogen is most frequently associated with antibiotic treatment, which disrupts the gut flora, allowing C. difficile to colonize and multiply (16). Extensive studies have demonstrated that two toxins, TcdA and TcdB, are responsible for severe tissue damage and consequent manifestation of disease (34). Infection with C. difficile can lead to severe diarrhea, abdominal pain, and further complications, such as pseudomembranous colitis, inflammation, and ulceration of the lining of the intestinal wall (5, 16). Importantly, recurrence rates following treatment can be as high as 35% irrespective of the drug used in initial treatment (10, 35). The estimated incidence in Canadian hospitals ranges from 38 to 95 cases per 100,000 patients (1), while in the United States, the estimated number of cases of C. difficile disease exceeds 250,000/year (36), with related health care costs of $1 billion annually (16). While prevention through antibiotic stewardship and optimal management of disease is the most obvious strategy currently used, there is a great need for alternate methods of treatment.Prior to the production and release of toxin, the organism must germinate from a recalcitrant spore form and proceed to colonize the gastrointestinal tract. This colonization process is an important first step in the disease process, whereby the organism penetrates the mucus layer and adheres to the underlying colonic epithelial cells, thereby facilitating the delivery of toxins to host cell receptors. Adhesion, an early critical step in colonization, involves a number of virulence factors, but the precise mechanisms by which bacteria adhere to the mucosa and initiate infection remain to be elucidated. Such adhesins include the flagellum (29) and the high-molecular-weight surface layer protein (6). C. difficile is known to express peritrichous flagella, and it has been observed that the level of adherence of flagellated strains to the mouse cecum is 10-fold higher than the level of adherence of nonflagellated strains (29).The flagellum plays a role in the ability of bacteria to adapt to their unique biological niches. Flagella from a wide range of bacteria have been shown to be important as both colonization and virulence factors, as well as critical to biofilm formation in many species (3, 37). In recent years, a rapidly increasing body of work has described the process of flagellar glycosylation in a diverse number of bacterial species (reviewed in reference 17). The diversity of glycan structures found on these organisms from unique environments points to a novel biological role for the respective glycans, which has yet to be revealed. In some cases, it has been demonstrated that the process of flagellar glycosylation has a role in both flagellar assembly and host-pathogen interactions (17). In Campylobacter spp., for example, in addition to being required for flagellar assembly, flagellar glycosylation plays a role in autoagglutination properties of cells and subsequent virulence and contributes to antigenic specificity (11). The sites of glycosylation of flagellin monomers from a diverse number of bacterial species have all been shown to reside within the two surface-exposed domains (denoted D2 and D3) of the flagellin monomer when assembled within the flagellar filament (22). Structural analysis of Salmonella enterica flagellin has revealed that these regions are surface exposed in the assembled filament and, hence, are well positioned to facilitate a myriad of extracellular interactions with either host cells or environmental substrates.Many of the studies of bacterial flagellar glycosylation have focused upon gram-negative organisms. Of the motile gram-positive bacteria, flagellin from Listeria monocytogenes has been shown to be glycosylated with β-O-linked GlcNAc at up to six sites/flagellin (23). The flagellins of Clostridium botulinum have also been reported to be glycosylated with legionaminic or hexuronic acid derivatives (32), and preliminary evidence for glycosylation of C. tyrobutyricum flagellin has been reported (4). However, a functional role for glycosylation has yet to be revealed for any of these organisms. It has been reported that purified C. difficile flagellin monomers from various strains migrate at a molecular weight greater than that predicted from the translated DNA sequence, but flagellin monomers showed no reactivity with standard glycan staining kits (31).In this study, we show that flagellins of C. difficile strain 630 as well as those from recent clinical isolates of C. difficile are modified with diverse O-linked glycan moieties. In addition, we have identified through mutagenesis a glycosyltransferase gene from the flagellar biosynthesis locus; it is involved in the glycosylation process and, upon inactivation, leads to loss of surface-associated flagellin protein.  相似文献   

13.
Escherichia coli morphotype E flagellar filaments have a characteristic surface pattern of short-pitch loops when examined by electron microscopy. Seven of the 50 known E. coli H (flagellar antigen) serotypes (H1, H7, H12, H23, H45, H49, and H51) produce morphotype E filaments. Polymerase chain reaction was used to amplify flagellin structural (fliC) genes from E. coli strains producing morphotype E flagellar filaments and from strains with flagellar filaments representing other morphotypes. A single DNA fragment was obtained from each strain, and the size of the amplified DNA correlated with the molecular mass of the corresponding flagellin protein. This finding and hybridization data suggest that these bacteria are monophasic. fliC genes from three E. coli serotypes (H1, H7, and H12) possessing morphotype E flagellar filaments were sequenced in order to assess the contribution of conserved flagellin primary sequence to the characteristic filament architecture. The H1 and H12 fliC sequences were identical in length (1,788 bp), while the H7 fliC sequence was shorter (1,755 bp). The deduced molecular masses of the FliC proteins were 60,857 Da (H1), 59,722 Da (H7), and 60,978 Da (H12). The H1, H7, and H12 flagellins demonstrated 98 to 99% identity over the amino-terminal region (190 amino acid residues) and 89% (H7) to 99% (H1 and H12) identity in the carboxy-terminal region (100 amino acid residues). The complete primary amino acid sequences for H1 and H12 flagellins differed by only 10 amino acids, accounting for previously reported serological cross-reactions. However, the central region of H7 flagellin had only 38% identity with H1 and H12 flagellins.The characteristic morphology of morphotype E flagellar filaments is therefore not dependent on a highly conserved primary sequence within the exposed central region. Comparison of morphotype E E. coli flagellins with those from E. coli K-12, Serratia marcescens, and several Salmonella serovars supported the established concept of highly conserved terminal regions flanking a variable central region.  相似文献   

14.
A multivalent, bifunctional flagellum carrying two different adhesive peptides in separate flagellin subunits within a filament was constructed in Escherichia coli. The inserted peptides were the fibronectin-binding 115-mer D repeat region of Staphylococcus aureus and the 302-mer collagen-binding region of YadA of Yersinia enterocolitica. Western blotting, immunoelectron microscopy, and adhesion tests with hybrid flagella from an in trans-complemented ΔfliC E. coli strain showed that individual filaments consisted of both recombinant flagellins.  相似文献   

15.
The bacterial flagellar filament is a very large macromolecular assembly of a single protein, flagellin. Various supercoiled states of the filament exist, which are formed by two structurally different conformations of flagellin in different ratios. We investigated the correlation between supercoiling of the protofilaments and molecular dynamics in the flagellar filament using quasielastic and elastic incoherent neutron scattering on the picosecond and nanosecond timescales. Thermal fluctuations in the straight L- and R-type filaments were measured and compared to the resting state of the wild-type filament. Amplitudes of motion on the picosecond timescale were found to be similar in the different conformational states. Mean-square displacements and protein resilience on the 0.1 ns timescale demonstrate that the L-type state is more flexible and less resilient than the R-type, whereas the wild-type state lies in between. Our results provide strong support that supercoiling of the protofilaments in the flagellar filament is determined by the strength of molecular forces in and between the flagellin subunits.  相似文献   

16.
Brucella are facultative intracellular bacteria that cause chronic infections by limiting innate immune recognition. It is currently unknown whether Brucella FliC flagellin, the monomeric subunit of flagellar filament, is sensed by the host during infection. Here, we used two mutants of Brucella melitensis, either lacking or overexpressing flagellin, to show that FliC hinders bacterial replication in vivo. The use of cells and mice genetically deficient for different components of inflammasomes suggested that FliC was a target of the cytosolic innate immune receptor NLRC4 in vivo but not in macrophages in vitro where the response to FliC was nevertheless dependent on the cytosolic adaptor ASC, therefore suggesting a new pathway of cytosolic flagellin sensing. However, our work also suggested that the lack of TLR5 activity of Brucella flagellin and the regulation of its synthesis and/or delivery into host cells are both part of the stealthy strategy of Brucella towards the innate immune system. Nevertheless, as a flagellin‐deficient mutant of B. melitensis wasfound to cause histologically demonstrable injuries in the spleen of infected mice, we suggested that recognition of FliC plays a role in the immunological stand‐off between Brucella and its host, which is characterized by a persistent infection with limited inflammatory pathology.  相似文献   

17.
18.
The bacterial flagellar filament is a very large macromolecular assembly of a single protein, flagellin. Various supercoiled states of the filament exist, which are formed by two structurally different conformations of flagellin in different ratios. We investigated the correlation between supercoiling of the protofilaments and molecular dynamics in the flagellar filament using quasielastic and elastic incoherent neutron scattering on the picosecond and nanosecond timescales. Thermal fluctuations in the straight L- and R-type filaments were measured and compared to the resting state of the wild-type filament. Amplitudes of motion on the picosecond timescale were found to be similar in the different conformational states. Mean-square displacements and protein resilience on the 0.1 ns timescale demonstrate that the L-type state is more flexible and less resilient than the R-type, whereas the wild-type state lies in between. Our results provide strong support that supercoiling of the protofilaments in the flagellar filament is determined by the strength of molecular forces in and between the flagellin subunits.  相似文献   

19.
Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found that R. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lacking fliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphA cassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.  相似文献   

20.
The length of the flagellar hook is controlled by the soluble protein FliK. FliK is structurally divided into two halves with distinct functions; the N-terminal half determines hook length, while the C-terminal half switches the secretion substrate specificity, consequently terminating hook elongation. FliK properly achieves both functions only when it is secreted. In a previous paper, we showed that a temperature-sensitive flgE mutant of Salmonella enterica serovar Typhimurium, SJW2219, produced basal bodies with short hooks (average length, 25 nm) at 37°C. In this study, we show that the mutant cells grown at 37°C secrete FliK but not flagellin (FliC), indicating that FliK is abortively secreted into the medium when the hook is shorter than 30 nm. In contrast, FliK unfailingly switches the gate modes when the hook is longer than 30 nm. Taking the FliC, FliK, and FlgM secretion patterns into account, we conclude that FliK determines the minimal length of the hook. We will discuss how FliK detects the critical switching point of the secretion gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号