首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoglycerate mutases (PGAMs) catalyse the reversible isomerisation of 3-phosphoglycerate and 2-phosphoglycerate, a step of glycolysis. PGAMs can be sub-divided into 2,3-bisphosphoglycerate-dependent (dPGAM) and -independent (iPGAM) enzymes. In plants, phosphoglycerate isomerisation is carried out by cytosolic iPGAM. Despite its crucial role in catabolism, little is known about post-translational modifications of plant iPGAM. In Arabidopsis thaliana, phosphoproteomics analyses have previously identified an iPGAM phosphopeptide where serine 82 is phosphorylated. Here, we show that this phosphopeptide is less abundant in dark-adapted compared to illuminated Arabidopsis leaves. In silico comparison of iPGAM protein sequences and 3D structural modelling of AtiPGAM2 based on non-plant iPGAM enzymes suggest a role for phosphorylated serine in the catalytic reaction mechanism. This is confirmed by the activity (or the lack thereof) of mutated recombinant Arabidopsis iPGAM2 forms, affected in different steps of the reaction mechanism. We thus propose that the occurrence of the S82-phosphopeptide reflects iPGAM2 steady-state catalysis. Based on this assumption, the metabolic consequences of a higher iPGAM activity in illuminated versus darkened leaves are discussed.  相似文献   

2.
Substrate antagonism has been described for a variety of enzymes with more than one substrate and is characterized by a lowering of the affinity of one substrate in the presence of the other(s). 3-Phosphoglycerate kinase (PGK) catalyzes phosphotransfer from 1,3-bisphosphoglycerate (bPG) to ADP to give 3-phosphoglycerate (PG) and ATP, and is subject to substrate antagonism. Because of the instability of bPG, antagonism has only been described between PG and ATP or ADP. Here, we show that antagonism also occurs between bPG and ADP. Using the stopped-flow method, we show that the dissociation constant for one substrate increases in the presence of the other, and that this decrease in affinity is mainly due to an increase in the dissociation rate constant. As a consequence, there is an increase in the overall interaction kinetics. Interestingly, in the presence of the mirror image of natural d-ADP, l-ADP (a good substrate for PGK), antagonism is absent. Using rapid-quench-flow, we studied the kinetics of ATP formation. The time courses present the following: (1) a lag with l-ADP, but not with d-ADP, the kinetics of which were similar to the interaction kinetics measured by stopped-flow; (2) a burst that is directed by the phosphotransfer; and (3) a steady-state that is rate limited by the release of product kinetics. Structural explanations for these results are proposed by analyzing the crystallographic structure of the fully closed conformation of PGK in complex with l-ADP, PG, and the transition-state analogue AlF4 compared to previously determined structures.  相似文献   

3.
Bacillus megaterium accumulated 3-phosphoglycerate during sporulation which was utilized during spore germination. During sporulation a protein was synthesized before or at the start of 3-phosphoglycerate accumulation inside the developing spores about 1.5 h before dipicolinic acid accumulation. This protein has an affinity for Mn2+ and other divalent metal ions and inhibits phosphoglycerate mutase activity which has been shown to require Mn2+ However, the levels of the inhibitor decreased considerably (75–85%) during spore germination. No appreciable amount of the inhibitor was detected in the vegetable cell and mother cell compartment; however, the forespore compartment possesses an activity comparable to that of dormant spores. The partially purified inhibitor has a molecular weight of 11,000 and possesses both high and low affinity binding sites for Mn2+ and Ca2+ as determined by Scatchard plot analysis.  相似文献   

4.
Aminoacylase 3 (AA3) deacetylates N-acetyl-aromatic amino acids and mercapturic acids including N-acetyl-1,2-dichlorovinyl-L-cysteine (Ac-DCVC), a metabolite of a xenobiotic trichloroethylene. Previous studies did not demonstrate metal-dependence of AA3 despite a high homology with a Zn2+-metalloenzyme aminoacylase 2 (AA2). A 3D model of mouse AA3 was created based on homology with AA2. The model showed a putative metal binding site formed by His21, Glu24 and His116, and Arg63, Asp68, Asn70, Arg71, Glu177 and Tyr287 potentially involved in catalysis/substrate binding. The mutation of each of these residues to alanine inactivated AA3 except Asn70 and Arg71, therefore the corrected 3D model of mouse AA3 was created. Wild type (wt) mouse AA3 expressed in E. coli contained ∼ 0.35 zinc atoms per monomer. Incubation with Co2+ and Ni2+ activated wt-AA3. In the cobalt-activated AA3 zinc was replaced with cobalt. Metal removal completely inactivated wt-AA3, whereas addition of Zn2+, Mn2+ or Fe2+ restored initial activity. Co2+ and to a lesser extent Ni2+ increased activity several times in comparison with intact wt-AA3. Co2+ drastically increased the rate of deacetylation of Ac-DCVC and significantly increased the toxicity of Ac-DCVC in the HEK293T cells expressing wt-AA3. The results indicate that AA3 is a metalloenzyme significantly activated by Co2+ and Ni2+.  相似文献   

5.
In vitro, 4-amino-6-trichloroethenyl-1,3-benzenedisulfonamide, a potent fasciolicide, causes a potent concentration-dependent inhibition of glucose uptake by mature Fasciola hepatica. In F. hepatica treated with the disulfonamide and then fed [U-14C]glucose, there was a 60% inhibition of glucose utilization and a corresponding inhibition of acetate and propionate formation. Treated fluke parasites possessed much lower levels of adenosine triphosphate, phosphoenolpyruvate, glucose 6-phosphate, and fructose 6-phosphate than untreated parasites and contained higher levels of glycerol and the free sugars fructose and mannose. Direct measurement of the effect of the disulfonamide on the glycolytic enzymes of F. hepatica demonstrated that 3-phosphoglycerate kinase (EC 2.7.2.3) and phosphoglyceromutase (EC 2.7.5.3) were inhibited. It is therefore suggested that the fasciolicidal activity of 4-amino-6-trichloroethenyl-1, 3-benzenedisulfonamide is due to inhibition of the enzymes 3-phosphoglycerate kinase and phosphoglyceromutase which effectively blocks the Embden-Myerhof glycolytic pathway.  相似文献   

6.
The peptidases in clan MH are known as cocatalytic zinc peptidases that have two zinc ions in the active site, but their metal preference has not been rigorously investigated. In this study, the molecular basis for metal preference is provided from the structural and biochemical analyses. Kinetic studies of Pseudomonas aeruginosa aspartyl aminopeptidase (PaAP) which belongs to peptidase family M18 in clan MH revealed that its peptidase activity is dependent on Co2+ rather than Zn2+: the kcat (s−1) values of PaAP were 0.006, 5.10 and 0.43 in no-metal, Co2+, and Zn2+ conditions, respectively. Consistently, addition of low concentrations of Co2+ to PaAP previously saturated with Zn2+ greatly enhanced the enzymatic activity, suggesting that Co2+ may be the physiologically relevant cocatalytic metal ion of PaAP. The crystal structures of PaAP complexes with Co2+ or Zn2+ commonly showed two metal ions in the active site coordinated with three conserved residues and a bicarbonate ion in a tetragonal geometry. However, Co2+- and Zn2+-bound structures showed no noticeable alterations relevant to differential effects of metal species, except the relative orientation of Glu-265, a general base in the active site. The characterization of mutant PaAP revealed that the first metal binding site is primarily responsible for metal preference. Similar to PaAP, Streptococcus pneumonia glutamyl aminopeptidase (SpGP), belonging to aminopeptidase family M42 in clan MH, also showed requirement for Co2+ for maximum activity. These results proposed that clan MH peptidases might be a cocatalytic cobalt peptidase rather than a zinc-dependent peptidase.  相似文献   

7.
A clone inserted with 1 104 bp fragment containing a 765bp Open Reading Frame(ORF), encoding a putative 2,3‐bisphosphoglycerate(2,3BPG) dependent Phosphoglycerate mutase(dPGAM) that catalyzes the transfer of a phosphate group from the C3 carbon atom to the C2 carbon atom of phosphoglycerate, was screened by mass sequencing from the cDNA library of the venom glands of Apis cerana. The deduced amino acid sequence shared high similarities (39% ‐ 88%)with the dPGAM of 7 other organisms, but the similarities with the iPGAM of 4 other organisms were low (10% ‐ 12%). Moreover, the alignment of Ac‐PGAM with the dPGAMs from 7 other organisms showed that all the active site amino acid residues were conserved. This result shows that Ac‐PGAM is a typical dPGAM. Thus, this is the second PGAM gene reported in Insecta. Furthermore, phylogenetic analysis showed that the evolutionary tree of PGAMs reflects the systematic relationship of species.  相似文献   

8.
Cofactor-independent phosphoglycerate mutase (iPGAM) is essential for the growth of C. elegans but is absent from humans, suggesting its potential as a drug target in parasitic nematodes such as Brugia malayi, a cause of lymphatic filariasis (LF). iPGAM''s active site is small and hydrophilic, implying that it may not be druggable, but another binding site might permit allosteric inhibition. As a comprehensive assessment of iPGAM''s druggability, high-throughput screening (HTS) was conducted at two different locations: ∼220,000 compounds were tested against the C. elegans iPGAM by Genzyme Corporation, and ∼160,000 compounds were screened against the B. malayi iPGAM at the National Center for Drug Screening in Shanghai. iPGAM''s catalytic activity was coupled to downstream glycolytic enzymes, resulting in NADH consumption, as monitored by a decline in visible-light absorbance at 340 nm. This assay performed well in both screens (Z′-factor >0.50) and identified two novel inhibitors that may be useful as chemical probes. However, these compounds have very modest potency against the B. malayi iPGAM (IC50 >10 µM) and represent isolated singleton hits rather than members of a common scaffold. Thus, despite the other appealing properties of the nematode iPGAMs, their low druggability makes them challenging to pursue as drug targets. This study illustrates a “druggability paradox” of target-based drug discovery: proteins are generally unsuitable for resource-intensive HTS unless they are considered druggable, yet druggability is often difficult to predict in the absence of HTS data.  相似文献   

9.
A 30-kDa fragment of Ca2+/calmodulin-dependent protein kinase II (30K-CaMKII) is a constitutively active protein Ser/Thr kinase devoid of autophosphorylation activity. We have produced a chimeric enzyme of 30K-CaMKII (designated CX40-30K-CaMKII), in which the N-terminal 40 amino acids of Xenopus Ca2+/calmodulin-dependent protein kinase I (CX40) were fused to the N-terminal end of 30K-CaMKII. Although CX40-30K-CaMKII exhibited essentially the same substrate specificity as 30K-CaMKII, it underwent significant autophosphorylation. Surprisingly, its autophosphorylation site was found to be Tyr-18 within the N-terminal CX40 region of the fusion protein, although it did not show any Tyr kinase activity toward exogenous substrates. Several lines of evidence suggested that the autophosphorylation occurred via an intramolecular mechanism. These data suggest that even typical Ser/Thr kinases such as 30K-CaMKII can phosphorylate Tyr residues under certain conditions. The possible mechanism of the Tyr residue autophosphorylation is discussed.  相似文献   

10.
11.
  • Glycolysis is a central metabolic pathway that provides energy and products of primary metabolites. 2,3‐Biphosphoglycerate‐independent phosphoglycerate mutase (iPGAM) is a key enzyme that catalyses the reversible interconversion of 3‐phosphoglycerate (3‐PGA) to 2‐phosphoglycerate (2‐PGA) in glycolysis. Low temperature is a common abiotic stress in rice production. However, the mechanism for rice iPGAM genes is not fully understood at low temperature.
  • In this study, the rice mutant tcm12, with chlorosis, malformed chloroplasts and impaired photosynthesis, was grown at a low temperature (<20 °C) to the three‐leaf stage, while the normal phenotype at 32 °C was used. Chlorophyll fluorescence analysis and transmission electron microscopy were used to examine features of the tcm12 mutant. The inheritance behaviour and function of TCM12 were then analysed thorough map‐based cloning, transgenic complementation and subcellular localisation.
  • The thermo‐sensitive chlorosis phenotype was caused by a single nucleotide mutation (T→C) on the fifth exon of TCM12 (LOC_Os12g35040) encoding iPGAM, localised to both nucleus and membranes. In addition, TCM12 was constitutively expressed, and its disruption resulted in down‐regulation of some genes associated with chlorophyll biosynthesis and photosynthesis at low temperatures (20 °C).
  • This is the first report of the involvement of rice iPGAM gene in chlorophyll synthesis, photosynthesis and chloroplast development, providing new insights into the mechanisms underlying early growth of rice at low temperatures.
  相似文献   

12.
The tetrahedral zinc and cobalt complexes [(TpPh,Me)ZnOH] (TpPh,Me = hydrotris(3,5-phenylmethylpyrazolyl)borate) and [(TpPh,Me)CoCl] were combined with 3-hydroxy-2H-pyran-2-one (3,2-pyrone), 3-hydroxy-4H-pyran-4-one (3,4-pyrone), and tropolone to form the corresponding [(TpPh,Me)M(L)] complexes (L = bidentate ligand, M = Zn2+, Co2+). X-ray crystal structures of these complexes were obtained to determine the mode of binding for each chelator and the coordination geometry of each complex. The complexes [(TpPh,Me)M(3,2-pyrone)] (M = Zn2+, Co2+) are the first structurally characterized metal complexes with this chelator. These complexes with the various chelators show that the cobalt(II) complexes are generally isostructural with their zinc(II) counterparts. In addition to structural characterization, inhibition data for each ligand against two different zinc(II) metalloproteins, matrix metalloproteinase-3 (MMP-3) and anthrax lethal factor (LF), were obtained. Examination of these chelators in the MMP-3 active site demonstrates the possible mode of inhibition.  相似文献   

13.
CEACAM1-LF, a homotypic cell adhesion adhesion molecule, transduces intracellular signals via a 72 amino acid cytoplasmic domain that contains two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a binding site for β-catenin. Phosphorylation of Ser503 by PKC in rodent CEACAM1 was shown to affect bile acid transport or hepatosteatosis via the level of ITIM phosphorylation, but the phosphorylation of the equivalent residue in human CEACAM1 (Ser508) was unclear. Here we studied this analogous phosphorylation by NMR analysis of the 15N labeled cytoplasmic domain peptide. Incubation with a variety of Ser/Thr kinases revealed phosphorylation of Ser508 by GSK3bβ but not by PKC. The lack of phosphorylation by PKC is likely due to evolutionary sequence changes between the rodent and human genes. Phosphorylation site assignment by mass spectrometry and NMR revealed phosphorylation of Ser472, Ser461 and Ser512 by PKA, of which Ser512 is part of a conserved consensus site for GSK3β binding. We showed here that only after phosphorylation of Ser512 by PKA was GSK3β able to phosphorylate Ser508. Phosphorylation of Ser512 by PKA promoted a tight association with the armadillo repeat domain of β-catenin at an extended region spanning the ITIMs of CEACAM1. The kinetics of phosphorylation of the ITIMs by Src, as well dephosphorylation by SHP2, were affected by the presence of Ser508/512 phosphorylation, suggesting that PKA and GSK3β may regulate the signal transduction activity of human CEACAM1-LF. The interaction of CEACAM1-LF with β-catenin promoted by PKA is suggestive of a tight association between the two ITIMs of CEACAM1-LF.  相似文献   

14.
R. Saijo  T. Kosuge 《Phytochemistry》1978,17(2):223-225
Partially purified preparations from etiolated sorghum seedlings catalyzed the conversion of DAHP to DHQ. The reaction catalysed by DHQ synthetase was stimulated by 0.1 μM to 0.1 mM NAD in the presence O-0.5 mM Co2+. NADH at 1 μM stimulated the reaction as much as 50% but became inhibitory at 100μM. Co2+ at 0.5mM stimulated enzyme activity 3-fold; Mg2+, Mn2+, Cu2+, and Zn2+ were not stimulatory. EDTA at 5 mM inhibited the reaction 95% but its effects were reversed by equal concentrations of Co2+. Phe, Tyr, Trp, t-cinnamate, several hydroxylated cinnamates, DHS, quinate, and shikimate at 0.3 mM failed to affect enzyme activity but slight inhibition occurred with DHQ and protocatechuic acid at 0.3 mM, inhibition being 14 % and 22 %, respectively. DHQ synthetase activity also was detected in spinach leaves and potato tuber tissue. Synthetase activity appeared to increase in response to injury of potato tuber and sweet potato root tissues.  相似文献   

15.
Cobalt is an important oligoelement required for bacteria; if present in high concentration, exhibits toxic effects that, depending on the microorganism under investigation, may even result in growth inhibition. The photosynthetic bacterium Rhodobacter (R.) sphaeroides tolerates high cobalt concentration and bioaccumulates Co2+ ion, mostly on the cellular surface. Very little is known on the chemical fate of the bioaccumulated cobalt, thus an X-ray absorption spectroscopy investigation was conducted on R. sphaeroides cells to gain structural insights into the Co2+ binding to cellular components. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure measurements were performed on R. sphaeroides samples containing whole cells and cell-free fractions obtained from cultures exposed to 5 mM Co2+. An octahedral coordination geometry was found for the cobalt ion, with six oxygen-ligand atoms in the first shell. In the soluble portion of the cell, cobalt was found bound to carboxylate groups, while a mixed pattern containing equivalent amount of two sulfur and two carbon atoms was found in the cell envelope fraction, suggesting the presence of carboxylate and sulfonate metal-binding functional groups, the latter arising from sulfolipids of the cell envelope.  相似文献   

16.
We report X-ray structures of pyruvate kinase from Leishmania mexicana (LmPYK) that are trapped in different conformations. These, together with the previously reported structure of LmPYK in its inactive (T-state) conformation, allow comparisons of three different conformers of the same species of pyruvate kinase (PYK). Four new site point mutants showing the effects of side-chain alteration at subunit interfaces are also enzymatically characterised. The LmPYK tetramer crystals grown with ammonium sulphate as precipitant adopt an active-like conformation, with sulphate ions at the active and effector sites. The sulphates occupy positions similar to those of the phosphates of ligands bound to active (R-state) and constitutively active (nonallosteric) PYKs from several species, and provide insight into the structural roles of the phosphates of the substrates and effectors. Crystal soaking in sulphate-free buffers was found to induce major conformational changes in the tetramer. In particular, the unwinding of the Aα6′ helix and the inward hinge movement of the B domain are coupled with a significant widening (4 Å) of the tetramer caused by lateral movement of the C domains. The two new LmPYK structures and the activity studies of site point mutations described in this article are consistent with a developing picture of allosteric activity in which localised changes in protein flexibility govern the distribution of conformer families adopted by the tetramer in its active and inactive states.  相似文献   

17.
The structural optimization of the molecules making them to fit into the active site pocket of COX-2 occupying the same space as covered by the natural substrate arachidonic acid helped in the emergence of compound 10 as an efficacious anti-inflammatory agent. Selective for COX-2 over COX-1, compound 10 exhibited IC50 0.02 µM for COX-2 and reversed acetic acid induced inflammation in rats by 73% when used at 10 mg kg−1 dose and the same dose of the compound also rescued the animals from inflammatory phase of formalin induced hyperalgesia. As evidenced by the results of molecular modeling studies supported by the nuclear Overhauser enhancement data, the appropriate geometry of the molecule in the active site pocket of COX-2 contributing to its H-bond/hydrophobic interactions with Ser530, Trp387 and Tyr385 seems responsible for the enzyme inhibitory activity of the compound.  相似文献   

18.
3-Phosphoglycerate kinase (ATP:3-phospho-d-glycerate 1-phosphotransferase, EC 2.7.2.3) has been covalently immobilized on a polyacrylamide-type support containing carboxylic groups activated by water-soluble carbodiimide. The activity was 88 units g?1 xerogel. The activity versus pH profile showed a sharper maximum at pH 6.5 in the case of the immobilized enzyme. The immobilized enzyme had a broad apparent optimum temperature range between 40 and 50°C. The apparent Km values of the immobilized 3-phosphoglycerate kinase were lower for both 3-phosphoglycerate and ATP than those of the soluble enzyme. In the case of the immobilized enzyme stabilities were enhanced.  相似文献   

19.
The ability of chloroplasts to synthesize aromatic amino acids from CO2 was investigated using highly purified, intact spinach ( Spinacia oleracea L. cv. Viking II) chloroplasts and 14CO2. Incorporation of 14C into aromatic amino acids was very low, however, and this was assumed to be due to lack of phosphoenolpyruvate (PEP), one of the substrates for the shikimate/arogenate pathway leading to aromatic amino acids in chloroplasts. Therefore, the glycolytic enzymes phosphoglycerate mutase (EC 2.7.5.3) and enolase (EC 4.2.1.11) were added to the 14CO2 fixation medium in order to convert labelled 3-phosphoglycerate exported from the intact chloroplasts to 2-phosphoglycerate and PEP. In this way a part of the glycolytic pathway was reconstituted outside the chloroplasts to substitute for the cytoplasm lost on isolation. The presence of both enzymes in the medium increased incorporation of 14C into Tyr and Phe more than ten-fold and incorporation into Trp about two-fold, while total 13CO2 fixation rates were not affected. Our results suggest that chloroplasts do not contain phosphoglycerate mutase or enolase, and that, in vivo, PEP is synthesized in the cytoplasm and imported to the chloroplast stroma for the biosynthesis of aromatic amino acids. The biosynthesis of all three aromatic amino acids was under feedback control. Using expected physiological concentrations (below 100 μ M ), each of the aromatic amino acids exerted a strict feedback inhibition of its own biosynthesis only.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号