首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F2alpha binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 x 10(-9)M and 1.1 x 10(-8)M for PGE1 and PGF2alpha, respectively. Competition of several natural prostaglandins for the PGE1 and PGF2alpha bovine luteal specific binding sites indicates specificity for the 9-keto or 9alpha-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5, 6-cis-double bond as well. Bovine luteal function was affected following treatment of heifers with 25 mg PGF2alpha as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contract, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained in vitro on PGF2alpha relative binding affinity to the bovine CL can be compared to data obtained independently in vitro on PGF2alpha induced luteolysis in the bovine, PGF2alpha relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

2.
Corpora lutea (CL) were collected from Holstein heifers on Days 5, 10, 15 and 18 (5/day) of the estrous cycle. Dispersed luteal cell preparations were made and 10(6) viable luteal cells were incubated with bovine luteinizing hormone (LH) and different amounts of arachidonic acid in the presence and absence of the prostaglandin (PG) synthetase inhibitor indomethacin. The concentrations of progesterone, PGF2 alpha and 6-keto-PGF1 alpha, the stable inactive metabolite of prostacyclin (PGI2), were measured. Day 5 CL had the greatest initial content of 6-keto-PGF1 alpha (1.01 +/- 0.16 ng/10(6) cells), and synthesized more 6-keto-PGF1 alpha (2.55 +/- 0.43) than CL collected on Days 10 (0.57 +/- 0.11), 15 (0.08 +/- 0.05) and 18 (0.19 +/- 0.03) during a 2-h incubation period. Arachidonic acid stimulated the production of 6-keto-PGF1 alpha by Days 10, 15 and 18 luteal tissue. PGF2 alpha was produced at a greater rate on Day 5 (0.69 +/- 0.17 ng/10(6) cells) than on Days 10 (0.06 +/- 0.01), 15 (0.04 +/- 0.02) and 18 (0.08 +/- 0.01). Arachidonic acid stimulated and indomethacin inhibited the production of PGF2 alpha, in most cases. The initial content of 6-keto-PGF1 alpha was higher than that of PGF2 alpha on all days of the cycle and more 6-keto-PGF1 alpha was synthesized in response to arachidonic acid addition. The ratio of 6-keto-PGF1 alpha content to PGF2 alpha content was 4.39, 2.30, 1.25 and 1.13 on Days 5, 10, 15 and 18, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied the effects of arachidonic acid and its metabolites on intracellular free calcium concentrations ([Ca2+]i) in highly purified bovine luteal cell preparations. Corpora lutea were collected from Holstein heifers between days 10 and 12 of the estrous cycle. The cells were dispersed and small and large cells were separated by unit gravity sedimentation and flow cytometry. The [Ca2+]i was determined by spectrofluorometry in luteal cells loaded with the fluorescent Ca2+ probe, Fura-2. Arachidonic acid elicited a dose-dependent increase in [Ca2+]i in both small and large luteal cells, having an effect at concentrations as low as 5 microM; and was maximally effective at 50 microM. Several other fatty acids failed to exert a similar response. Addition of nordihydroguaiaretic acid (NDGA) or indomethacin failed to suppress the effects of arachidonic acid. In fact, the presence of both inhibitors resulted in increases of [Ca2+]i, with NDGA exerting a greater stimulation of [Ca2+]i than indomethacin. Prostaglandin F2 alpha (PGF2 alpha) as well as prostaglandin E2 (PGE2) increased [Ca2+]i in the small luteal cells. These results support the idea that arachidonic acid exerts a direct action in mobilizing [Ca2+]i, in the luteal cells. Furthermore, they demonstrate that the cyclooxygenase (PGF2 alpha and PGE2) and lipoxygenase products of arachidonic acid metabolism also play a role in increasing [Ca2+]i in bovine luteal cells. Since the bovine corpus luteum contains large quantities of arachidonic acid, these findings suggest that this compound may regulate calcium-dependent functions of the corpus luteum, including steroid and peptide hormone production and secretion.  相似文献   

4.
5.
Nitric oxide (NO) has been reported to be luteolytic in vitro and in vivo in cows. However, an NO donor reversed PGF2alpha-induced inhibition of rat luteal progesterone secretion in vitro and an NO donor or endothelin-1 stimulated bovine luteal tissue secretion of prostaglandins E (PGE; PGE1, PGE2) in vitro without affecting progesterone or PGF2alpha secretion. In addition, chronic infusion of an NO donor into the interstitial tissue of the ovarian vascular pedicle adjacent the luteal-containing ovary prevented the decline in circulating progesterone, while a nitric oxide synthase (NOS) inhibitor did not affect luteolysis. The objective of this experiment was to determine whether an NO donor or NOS inhibitor infused chronically intrauterine adjacent to the luteal-containing ovary during the ovine estrous cycle was luteolytic or antiluteolytic. Ewes were treated either with vehicle (N=5), diethylenetriamine (DETA-control for DETANONOate; N=5), (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate-long acting NO donor; N=6), l-arginine (N=5), l-nitro-arginine methyl ester (l-NAME-NOS inhibitor; N=6), or NG-monomethyl-l-arginine acetate (l-NMMA; NOS inhibitor; N=5) every 6h from 2400h (0h) on day 8 through 1800h on day 18 of the estrous cycle. Jugular venous blood and inferior vena cava plasma via a saphenous vein cathether 5cm anterior to the juncture of the ovarian vein and inferior vena cava were collected every 6h for analysis for progesterone and PGF2alpha and PGE, respectively, by RIA. Corpora lutea were collected at 1800h on day 18 and weighed. Weights of corpora lutea were heavier (P< or =0.05) in DETANONOate-treated ewes when compared to vehicle, DETA, l-arginine, l-NAME, or l-NMMA-treated ewes, l-arginine luteal weights were heavier than vehicle, DETA, l-arginine, l-NAME, or l-NMMA-treated ewes, and luteal weights of vehicle, DETA, l-NAME, or l-NMMA-treated ewes did not differ amongst each other (P> or =0.05). Profiles of progesterone in jugular venous blood on days 8-18 differed (P< or =0.05) in DETANONOate-treated ewes when compared to vehicle, DETA, l-arginine, l-NMMA or l-NAME-treated ewes, which did not differ (P> or =0.05) amongst each other. The PGE:PGF2alpha ratio profile in inferior vena cava plasma of DETANONOate-treated ewes was increased (P< or =0.05) when compared to all other treatment groups. In a second experiment, conversion of [3H PGE2] to [3H PGF2alpha] by day 15 ovine caruncular endometrium in vitro was determined in vehicle, DETA, or DETANONOate-treatment groups. Conversion of [3H PGE2] to [3H PGF2alpha] was decreased (P< or =0.05) only by DETANONOate. It is concluded that NO is not luteolytic during the ovine estrous cycle, but may instead be antiluteolytic and prevent luteolysis by altering the PGE:PGF2alpha ratio secreted by the uterus.  相似文献   

6.
Prostaglandin (PG) F2alpha that is released from the uterus is essential for spontaneous luteolysis in cattle. Although PGF2alpha and its analogues are extensively used to synchronize the estrous cycle by inducing luteolysis, corpora lutea (CL) at the early stage of the estrous cycle are resistant to the luteolytic effect of PGF2alpha. We examined the sensitivity of bovine CL to PGF2alpha treatment in vitro and determined whether the changes in the response of CL to PGF2alpha are dependent on progesterone (P4), oxytocin (OT), and PGs produced locally. Bovine luteal cells from early (Days 4-5 of the estrous cycle) and mid-cycle CL (Days 8-12 of the estrous cycle) were preexposed for 12 h to a P4 antagonist (onapristone: OP; 10(-4) M), an OT antagonist (atosiban: AT; 10(-6) M), or indomethacin (INDO; 10(-4) M) before stimulation with PGF2alpha. Although OP reduced P4 secretion (p < 0.001) only in early CL, it reduced OT secretion in the cells of both phases examined (p < 0.001). OP also reduced PGF2alpha and PGE2 secretion (p < 0.01) from early CL. However, it stimulated PGF2alpha secretion in mid-cycle luteal cells (p < 0.001). AT reduced P4 secretion in early and mid-cycle CL (p < 0.05). Moreover, PGF2alpha secretion was inhibited (p < 0.05) by AT in early CL. The OT secretion and the intracellular level of free Ca2+ ([Ca2+]i) were measured as indicators of CL sensitivity to PGF2alpha. PGF2alpha had no influence on OT secretion, although [Ca2+]i increased (p < 0.05) in the early CL. However, the effect of PGF2alpha was augmented (p < 0.01) in cells after pretreatment with OP, AT, and INDO in comparison with the controls. In mid-cycle luteal cells, PGF2alpha induced 2-fold increases in OT secretion and [Ca2+]i. However, in contrast to results in early CL, these increases were magnified only by preexposure of the cells to AT (p < 0.05). These results indicate that luteal P4, OT, and PGs are components of an autocrine/paracrine positive feedback cascade in bovine early to mid-cycle CL and may be responsible for the resistance of the early bovine CL to the exogenous PGF2alpha action.  相似文献   

7.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-1 (IGF-1) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

8.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-I (IGF-I) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

9.
10.
We have examined the effects of endogenous lipoxygenase products on basal progesterone (P4) production by cultured bovine mid-luteal cells. The involvement of lipoxygenase products in the stimulatory effect of LH on luteal cAMP accumulation and P4 production was also examined. Bovine luteal cells from mid-cycle corpora lutea (CL) were exposed for 16 h to a lipoxygenase inhibitor (nordihydroguaiaretic acid: NDGA; 0.33-33 microM). For the last 4 h of incubation, the cells were exposed to LH and/or three different lipoxygenase products, 5-, 12- and 15-hydroxyeicosatetraenoic acid (HETE). NDGA inhibited P4 production by the cells in a dose-dependent manner (P < 0.05). NDGA-reduced P4 production was reversed by the addition of 12-HETE, but not 5- or 15-HETE, whereas 5-, 12- and 15-HETE alone showed no significant effect on P4 production in the intact cells. Furthermore, NDGA (33 microM) blocked the stimulatory action of LH on P4 production (P < 0.05), without changing cAMP accumulation (P > 0.1). When the cells were exposed to 5-, 12- or 15-HETE with LH and NDGA, only 15-HETE maintained the stimulatory effect of LH on P4 production in the cells (P < 0.05). These results suggest that endogenous lipoxygenase products play important roles in P4 production by bovine CL, i.e. basal P4 production is supported by 12-HETE, and LH-stimulated P4 production is partially mediated via the activation of lipoxygenase and subsequent 15-HETE formation downstream of the LH-activated cAMP-PKA-phosphorylation pathway.  相似文献   

11.
This study aimed to confirm that the luteolysis in normal-cycling dairy heifers seen during short estrous cycles induced with cloprostenol (Clp) and GnRH administered 24h apart is caused by a premature release of prostaglandin F(2alpha) (PGF(2alpha)). A further aim was to study the PGF(2alpha) release pattern more closely to determine whether it resembles the spontaneous release occurring during normal regression of the corpus luteum (CL) or whether PGF(2alpha) is continuously secreted after the induced ovulations, leading to short estrous cycles. Twenty-four Ayrshire heifers were allotted to four equally sized groups. After estrus synchronization with 0.5mg of Clp, a new luteolysis was induced with 0.5mg of Clp on Day 6 (groups T-d6 and C-d6) or Day 7 (groups T-d7 and C-d7) after ovulation. Gonadorelin (0.1mg i.m.) was given to groups T-d6 and T-d7 to induce premature ovulation 24h later. Groups C-d6 and C-d7 served as controls. Ovaries were examined daily by transrectal ultrasonography, while blood samples (for progesterone and 15-ketodihydro-PGF(2alpha) analyses) were obtained via a jugular catheter every 3h, starting from the second Clp treatment and continuing for 9 days postovulation. Unresponsiveness to Clp or anovulation resulted in 4 C-d6 heifers being excluded. Four heifers in group T-d6 and three in group T-d7 had a short estrous cycle of 8-12 days, while all others had a cycle of normal length. Significant elevations in 15-ketodihydro-PGF(2alpha) concentrations with recurrent high peaks coincided with a decrease in progesterone concentration and were detected in all heifers that showed a short estrous cycle, but not in any heifers with normal estrous cycles in groups T and C. In conclusion, a premature release of PGF(2alpha), which closely resembles its release during spontaneous luteolysis, causes luteal regression in these short cycles.  相似文献   

12.
Although prostaglandin (PG) F(2alpha) released from the uterus has been shown to cause regression of the bovine corpus luteum (CL), the neuroendocrine, paracrine, and autocrine mechanisms regulating luteolysis and PGF(2alpha) action in the CL are not fully understood. A number of substances produced locally in the CL may be involved in maintaining the equilibrium between luteal development and its regression. The present study was carried out to determine whether noradrenaline (NA) and nitric oxide (NO) regulate the sensitivity of the bovine CL to PGF(2alpha) in vitro and modulate a positive feedback cascade between PGF(2alpha) and luteal oxytocin (OT) in cows. Bovine luteal cells (Days 8-12 of the estrous cycle) cultured in glass tubes were pre-exposed to NA (10(-5) M) or an NO donor (S-nitroso-N:-acetylpenicillamine [S-NAP]; 10(-4) M) before stimulation with PGF(2alpha) (10(-6) M). Noradrenaline significantly stimulated the release of progesterone (P(4)), OT, PGF(2alpha), and PGE(2) (P: < 0.01); however, S-NAP inhibited P(4) and OT secretion (P: < 0.05). Oxytocin secretion and the intracellular level of free Ca(2+) ([Ca(2+)](i)) were measured as indicators of CL sensitivity to PGF(2alpha). Prostaglandin F(2alpha) increased both the amount of OT secretion and [Ca(2+)](i) by approximately two times the amount before (both P: < 0.05). The S-NAP amplified the effect of PGF(2alpha) on [Ca(2+)](i) and OT secretion (both P: < 0.001), whereas NA diminished the stimulatory effects of PGF(2alpha) on [Ca(2+)](i) (P: < 0.05). Moreover, PGF(2alpha) did not exert any additionally effects on OT secretion in NA-pretreated cells. The overall results suggest that adrenergic and nitrergic agents play opposite roles in the regulation of bovine CL function. While NA stimulates P(4) and OT secretion, NO may inhibit it in bovine CL. Both NA and NO are likely to stimulate the synthesis of luteal PGs and to modulate the action of PGF(2alpha). Noradrenaline may be the factor that is responsible for the limited action of PGF(2alpha) on CL and may be involved in the protection of the CL against premature luteolysis. In contrast, NO augments PGF(2alpha) action on CL and it may be involved in the course of luteolysis.  相似文献   

13.
Jamshidi AA  Girard D  Beaudry F  Goff AK 《Steroids》2007,72(13):843-850
Oxytocin receptor (OTR) expression is suppressed by progesterone (P4) during the luteal phase of the estrous cycle and then it increases at the time of luteolysis, but its regulation is still not completely understood. The objective of this work was to characterize P4 metabolism by endometrial cells in vitro and determine if metabolites were able to modify prostaglandin secretion in response to oxytocin (OT). Endometrial epithelial and stromal cells were incubated with 3H-P4 or 3H-pregnenolone (P5) for 6 or 24 h. Metabolites in the medium were separated by HPLC. The results showed that P4 and P5 were converted to two major polar metabolites and a less polar metabolite that was identified as 5alpha- or 5beta-pregnanedione by LC/MS. Progesterone metabolism was similar in both stromal and epithelial cells. To determine if 5alpha- or 5beta-pregnanedione were able to modify PGF(2)alpha synthesis, cells were cultured with P4, 5alpha- or 5beta-pregnanedione (100 ng ml(-1)) for 48 h and then each group of cells was incubated for a further 4-6 h with or without OT (200 ng ml(-1)). Results showed that only P4 caused significant (P<0.001) increase in basal, but not OT-stimulated, PGF(2)alpha synthesis. OT binding assays showed no significant effect of progesterone or its metabolites on OTR concentration. In conclusion, bovine endometrial cells are able to metabolize pregnenolone and progesterone but neither 5alpha- nor 5beta-pregnanedione altered prostaglandin synthesis or OTR number in endometrial epithelial cells. These data suggest that 5-pregnanediones do not play a role in the regulation OT-stimulated PGF(2)alpha secretion during the bovine estrous cycle.  相似文献   

14.
To determine the physiological significance of tumor necrosis factor alpha (TNFalpha) in the regulation of luteolytic prostaglandin (PG) F(2alpha) release by the bovine endometrium, the effect of TNF-alpha on PGF(2alpha) output by the endometrial tissues in vitro was investigated and compared with the effect of oxytocin (OT). Furthermore, the presence of specific receptors for TNFalpha in the bovine endometrium during the estrous cycle was determined. Endometrial slices (20-30 mg) taken from six stages of the estrous cycle (estrus: Day 0; early I: Days 2-3; early II: Days 5-6; mid-: Days 8-12; late: Days 15-17; and follicular: Days 19-21), as determined by macroscopic examination of the ovaries and uterus, were exposed to TNFalpha (0.06-6 nM) and/or OT (100 nM). OT stimulated PGF(2alpha) output at the follicular stage and at estrus (P < 0.001), but not at the late luteal stage. On the other hand, the stimulatory effects of TNFalpha on PGF(2alpha) output were observed not only at the follicular stage but also at the late luteal stage (P < 0.001). When the endometrial tissues at late luteal stage were simultaneously exposed to TNFalpha (0.6 nM) and OT (100 nM), the stimulatory effect on PGF(2alpha) output was higher than the effect of TNFalpha or OT alone (P < 0.05). Specific binding of TNFalpha to the bovine endometrial membranes was observed throughout the estrous cycle. The concentration of TNF-alpha receptor at the early I luteal stage was less than the concentrations at other luteal stages (P < 0.01). The dissociation constant (K(d)) values of the endometrial membranes were constant during the estrous cycle. The overall results lead us to hypothesize that TNFalpha may be a trigger for the output of PGF(2alpha) by the endometrium at the initiation of luteolysis in cattle.  相似文献   

15.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

16.
Five new concepts concerning the control of corpus luteum function in the cow have been developed in recent years. Prostacyclin (PGI-2) plays a luteotrophic role. Conversely, products of the lipoxygenase pathway of arachidonic acid metabolism, particularly 5 hydroxyeicosatetraenoic acid (5-HETE), play luteolytic roles. Luteal cells arise from two sources. The small luteal cells are all of theca cell origin; the large cells found early in the cycle (Days 2-6) are mainly of granulosa cell origin. However, a population of large cells found after Day 10 of the cycle are of theca cell origin. Oxytocin of luteal cell origin plays a role in development of the corpus luteum and possibly in its regression. The recently described Ca2+-polyphosphoinositol-protein kinase C second messenger system, as well as the LH-cAMP system, is involved in control of progesterone synthesis in the bovine corpus luteum. Progesterone synthesis in the small theca-derived luteal cells is primarily controlled by the cAMP system. However, elevated intracellular calcium diminishes cAMP-mediated progesterone synthesis in these cells. These findings modify our current concepts of the mechanisms of control of progesterone secretion by the corpus luteum and suggest several new lines of research.  相似文献   

17.
In our previous study we have demonstrated that treatment of endometrial explants with LH increased 13,14-dihydro-15-ketoprostaglandin F(2alpha) (PGFM) accumulation in pigs. This was particularly visible on Days 14-16 of the estrous cycle. Action of gonadotropin in porcine endometrium appears to be mediated by LH/hCG receptors whose number is dependent on the day of the estrous cycle. In the current study i.v. infusion (1 hour) of hCG (200 IU) performed on Days 10 (n=4) and 12-14 (n=4) of the porcine estrous cycle did not affect plasma PGFM (ng/ml+/-SEM) concentrations. In contrast, administration of hCG on Days 15-17 produced, depending on plasma PGFM level before the infusion period, three different types of response: I. plasma PGFM surge of amplitude 0.62+/-0.15 was observed when the mean basal pre-infusion PGFM plasma level was 0.23+/-0.05 (n=6 gilts); II. the delayed PGFM surge of amplitude 0.62+/-0.15 was determined when basal pre-infusion PGFM level was 0.80+/-0.20 (n=6); and III. lack of PGFM response to hCG was found when basal pre-infusion PGFM level was 1.09+/-0.61 (n=6). Concentrations of plasma PGFM before and after saline infusion did not differ on Days 12-14 and 16 of the estrous cycle. In the next experiment blood samples were collected every 1 hour on Days 12-19 of the estrous cycle to determine concentrations of LH, PGFM and progesterone in four gilts. In particular gilts, plasma peaks of LH closely preceded surges of PGFM in 72.7, 84.6, 75.0 and 66.6 percent, respectively. The highest PGFM surges followed a decline in plasma progesterone concentration. We conclude that the increased PGF(2alpha) metabolite production after hCG infusion during the late luteal phase of the estrous cycle as well as the relationship between plasma LH and PGFM peaks suggest the LH involvement in the elevation of endometrial PGF(2alpha) secretion in pigs, and, in consequence, induction of luteolysis.  相似文献   

18.
The release of luteal oxytocin during spontaneous and prostaglandin-induced luteolysis was investigated in cows. A continuous-flow microdialysis system was used in 11 cows to collect dialysates of the luteal extracellular space between Days 12 and 24 postestrus. Seven cows were untreated and were expected to exhibit spontaneous luteolysis during sampling, whereas 4 cows received prostaglandin F(2alpha) (PGF(2alpha)) systemically between Days 13 and 15 to induce luteolysis during sampling. Oxytocin was detectable in the dialysate of all cows before Day 16 postestrus and occurred as 2 or 3 discrete pulses per 12-h sampling period. For non-PGF(2alpha)-treated cows, dialysate oxytocin content began to decline spontaneously on Day 15 postestrus and was undetectable by Day 17 postestrus. Oxytocin decay curves preceded onset of serum progesterone decline by at least 72 h and were not related temporally with onset of progesterone decline within cow. Exogenous PGF(2alpha) (25 mg, i.m.) produced a 10-fold increase in dialysate oxytocin within 1 h (1.9 +/- 0.3 pg/ml to 20.8 +/- 3.0 pg/ml; P < 0. 01). Dialysate oxytocin then declined to pretreatment concentrations within 2 h and was undetectable within 8 h posttreatment. A second PGF(2alpha) injection given 20 h after the first did not result in a measurable increase in dialysate oxytocin, probably because luteolysis was underway. Although robust luteal oxytocin release was observed after treatment with a pharmacological dose of PGF(2alpha), the lack of detectable oxytocin secretion during spontaneous luteolysis suggests that the contribution of luteal oxytocin in the cow may be less than that proposed for the ewe.  相似文献   

19.
Basu S  Kindahl H 《Theriogenology》1987,28(2):175-193
Prostaglandin F(2alpha) (PGF(2alpha)), an arachidonic acid metabolism product of the prostaglandin synthetase pathway, is synthesized and released from the endometrium during luteolysis in nonpregnant animals. When proper conception occurs, the synthesis and release pattern is changed to maintain the corpus luteum (CL) function. The biosynthesis of prostaglandins in the bovine endometrium was highest in the microsomes but of low order. In nonpregnancy, the formation of prostaglandins from labelled precursor acid was higher than in pregnancy. Besides the prostaglandin synthetase, an inhibiting activity on the conversion of arachidonic acid to prostaglandins was found in both the nonpregnant and pregnant endometrium. During luteolysis (Day 17), a low inhibiting capacity was seen in comparison with other days of the estrous cycle (Days 1, 4 and 14). The inhibitory capacity was very high on Days 16 to 20, 25, and 31 of pregnancy. In the nonpregnant endometrium at Day 17, a very low inhibitor potency, calculated as IC(50) values, was found both in the cytoplasma and in the microsomes, whereas during early pregnancy (Days 17, 18, and 20) both cytoplasma and microsomes possessed very high inhibitor potency. This finding indicates that the bovine endometrium contains both prostaglandin synthetase and an unknown potent inhibitor of prostaglandin biosynthesis that regulates prostaglandin biosynthesis both during the estrous cycle and early pregnancy.  相似文献   

20.
Bovine luteal cells from Days 4, 8, 14 and 18 of the estrous cycle were incubated for 2 h (1 x 10(5) cells/ml) in serum-free media with one or a combination of treatments [control (no hormone), prostaglandin F2 alpha (PGF), oxytocin (OT), estradiol-17 beta (E) or luteinizing hormone (LH)]. Luteal cell conditioned media were then assayed by RIA for progesterone (P), PGF, and OT. Basal secretion of PGF on Days 4, 8, 14 and 18 was 173.8 +/- 66.2, 111.1 +/- 37.8, 57.7 +/- 15.4 and 124.3 +/- 29.9 pg/ml, respectively. Basal release of OT and P was greater on Day 4 (P less than 0.01) than on Day 8, 14 and 18 (OT: 17.5 +/- 2.6 versus 5.6 +/- 0.7, 6.0 +/- 1.4 and 3.1 +/- 0.4 pg/ml; P: 138.9 +/- 19.5 versus 23.2 +/- 7.5, 35.4 +/- 6.5 and 43.6 +/- 8.1 ng/ml, respectively). Oxytocin increased (P less than 0.01) PGF release by luteal cells compared with control cultures irrespective of day of estrous cycle. Estradiol-17 beta stimulated (P less than 0.05) PGF secretion on Days 8, 14 and 18, and LH increased (P less than 0.01) PGF production only on Day 14. Prostaglandin F2 alpha, E and LH had no effect on OT release by luteal cells from any day. Luteinizing hormone alone or in combination with PGF, OT or E increased (P less than 0.01) P secretion by cells from Days 8, 14 and 18. However on Day 8, a combination of PGF + OT and PGF + E decreased (P less than 0.05) LH-stimulated P secretion. These data demonstrate that OT stimulates PGF secretion by bovine luteal cells in vitro. In addition, LH and E also stimulate PGF release but effects may vary with stage of estrous cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号