首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
脂肪组织不仅是机体的能量储存库,而且也是重要的内分泌器官。脂肪组织分泌多种激素和细胞因子,参与调节机体多种生理和病理过程。目前飞速发展的蛋白质组学技术,为深入研究脂肪发育的分子机制及其代谢紊乱发生的遗传机理提供了有力的工具。对蛋白质组学在脂肪组织中的研究进展进行了综述,为脂肪组织的发育调控及代谢疾病的治疗提供了新的思路。  相似文献   

2.
Objective: The etiology of some obesity may involve adipocyte hyperplasia. However, the role of adipocyte number in establishing adipose mass is unclear. Cyclin‐dependent kinase inhibitor p27 regulates activity of cyclin/cyclin‐dependent kinase complexes responsible for cell cycle progression. This protein is critical for establishing adult adipocyte number, and p27 knockout increases adult adipocyte number. The SCF (for Skp1‐Cullin‐F‐box protein) complex targets proteins such as p27 for ubiquitin‐proteosome degradation; the F box protein S phase kinase‐associated protein 2 (Skp2), a component of the SCF complex, specifically recognizes p27 for degradation. We used Skp2 knockout (Skp2?/?) mice to test whether Skp2 loss decreased adipose mass and adipocyte number. Research Methods and Procedures: We measured body weight, adipose mass, adipocyte diameter and number, and glucose tolerance in wild‐type (WT), Skp2?/?, and p27?/?Skp2?/? mice. Mouse embryo fibroblasts (MEFs) from WT and Skp2?/? fetuses were differentiated to determine whether Skp2 directly affected adipogenesis. Results: Skp2?/? mice had a 50% decrease in both subcutaneous and visceral fat pad mass and adipocyte number; these decreases exceeded those in body weight, kidney, or muscle. To test the hypothesis that Skp2 effects on adipocyte number involved p27 accumulation, we used p27?/?Skp2?/? double knockout mice. The Skp2?/? decrements in adipocyte number and fat pad mass were totally reversed in p27?/?Skp2?/? mice. Adipogenesis was inhibited in MEFs from Skp2?/? vs. WT mice, and this inhibition was absent in MEFs from p27?/?Skp2?/? mice. Discussion: Our results indicate that Skp2 regulates adipogenesis and ultimate adipocyte number in vivo; thus, Skp2 may contribute to obesity involving adipocyte hyperplasia.  相似文献   

3.
目的:棕色脂肪组织活化和白色脂肪组织棕化是改善减肥的良好策略。本研究利用冷刺激作为阳性对照,观察京尼平对小鼠脂肪组织活化与棕化的作用。方法:8周龄雄性C57BL/6J小鼠30只,随机分为正常对照组、京尼平组、冷刺激组, 每组10只。京尼平组小鼠腹腔注射给予京尼平处理(15 mg/(kg·d),连续9 d),对照组用生理盐水处理,冷刺激组小鼠在室温(22℃±2℃)下处理4 d后,置于4℃环境中进行冷刺激处理5 d(24 h/d)。检测各组小鼠每天摄食量、体重和体温变化,取肩胛下区、腹股沟区及附睾周围部分脂肪组织观察形态学的变化,测定棕色脂肪组织、皮下白色脂肪组织以及内脏白色脂肪组织解偶联蛋白1(UCP1)的表达。结果:与正常对照组相比,京尼平组小鼠白色脂肪湿重下降16%,冷刺激组下降28%,均有明显差异(P<0.05);京尼平组和冷刺激组白色脂肪组织颜色变深,HE染色显示脂肪细胞内的脂滴变小,数量增加;京尼平组小鼠的皮下、内脏白色脂肪组织和棕色3种脂肪组织中的UCP1表达量均明显增加(P<0.05)。结论:京尼平通过上调UCP1的表达促进棕色脂肪组织活化和白色脂肪组织棕化,此效应是京尼平降脂减轻体重的作用机制之一。  相似文献   

4.
Lipoprotein lipase (LPL) and pOb24 mRNAs are known to be early markers of adipose cell differentiation. Comparative studies of the expression of pOb24 and LPL genes during adipose conversion of Ob1771 preadipocyte cells and in mouse adipose tissue have shown the following: 1) the expression of both genes takes place at confluence; this event can also be triggered by growth arrest of exponentially growing cells at the G1/S stage of the cell cycle; 2) In contrast to glycerol-3-phosphate dehydrogenase mRNA, the emergence of pOb24 and lipoprotein lipase mRNAs requires neither growth hormone or tri-iodothyronine as obligatory hormones nor insulin as a modulating hormone; 3) in mouse adipose tissue, pOb24 mRNA is present at a high level in stromal-vascular cells and at a low level in mature adipocytes, and in contrast LPL mRNAs are preferentially expressed in mature adipocytes. Thus, these two genes do not appear to be regulated in a similar manner, as also shown by the differential inhibition of their expression by tumor necrosis factor (TNF) and transforming growth factor-beta (TGF-beta).  相似文献   

5.
《Cell reports》2023,42(3):112166
  1. Download : Download high-res image (226KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
Aging causes phenotypic changes in skeletal muscle progenitor cells (Skm‐PCs), such as reduced myogenesis and increased adipogenesis due to alterations in their environment or niche. Secreted protein acidic and rich in cysteine (SPARC), which is secreted into the niche of Skm‐PCs, inhibits adipogenesis and promotes myogenesis. We have previously reported that Skm‐PC responsiveness to SPARC declines with age, although the mechanism underlying this decline is unknown. In this study, we found that SPARC is internalized by Skm‐PCs and that this uptake increases with age. Internalization is dependent on integrin‐α5, a cell surface SPARC‐binding molecule, and clathrin‐mediated endocytosis. We also demonstrated that internalized SPARC is transported to Rab7‐positive endosomes. Skm‐PCs from old rats exhibited increased clathrin expression and decreased Rab7 expression exclusively in MyoD‐negative cells. In loss‐of‐function analyses, clathrin knockdown increased the anti‐adipogenic effect of SPARC, whereas Rab7 knockdown reduced it, indicating that alterations in SPARC internalization may mediate the age‐related decline in its anti‐adipogenic effect. These results provide insights into age‐related SPARC resistance in Skm‐PCs, which may lead to sarcopenia.  相似文献   

8.
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non‐shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT.  相似文献   

9.
10.
11.
12.
Obesity, defined as an excess of adipose tissue that adversely affects health, is a major cause of morbidity and mortality. However, to date, understanding the structure and function of human adipose tissue has been limited by the inability to visualize cellular components due to the innate structure of adipocytes, which are characterized by large lipid droplets. Combining the iDISCO and the CUBIC protocols for whole tissue staining and optical clearing, we developed a protocol to enable immunostaining and clearing of human subcutaneous white adipose tissue (WAT) obtained from individuals with severe obesity. We were able to perform immunolabelling of sympathetic nerve terminals in whole WAT and subsequent optical clearing by eliminating lipids to render the opaque tissue completely transparent. We then used light sheet confocal microscopy to visualize sympathetic innervation of human WAT from obese individuals in a three-dimensional manner. We demonstrate the visualization of sympathetic nerve terminals in human WAT. This protocol can be modified to visualize other structures such as blood vessels involved in the development, maintenance and function of human adipose tissue in health and disease.  相似文献   

13.
CRISPR/Cas9 has enabled inducible gene knockout in numerous tissues; however, its use has not been reported in brown adipose tissue (BAT). Here, we developed the brown adipocyte CRISPR (BAd-CRISPR) methodology to rapidly interrogate the function of one or multiple genes. With BAd-CRISPR, an adeno-associated virus (AAV8) expressing a single guide RNA (sgRNA) is administered directly to BAT of mice expressing Cas9 in brown adipocytes. We show that the local administration of AAV8-sgRNA to interscapular BAT of adult mice robustly transduced brown adipocytes and ablated expression of adiponectin, adipose triglyceride lipase, fatty acid synthase, perilipin 1, or stearoyl-CoA desaturase 1 by >90%. Administration of multiple AAV8 sgRNAs led to simultaneous knockout of up to three genes. BAd-CRISPR induced frameshift mutations and suppressed target gene mRNA expression but did not lead to substantial accumulation of off-target mutations in BAT. We used BAd-CRISPR to create an inducible uncoupling protein 1 (Ucp1) knockout mouse to assess the effects of UCP1 loss on adaptive thermogenesis in adult mice. Inducible Ucp1 knockout did not alter core body temperature; however, BAd-CRISPR Ucp1 mice had elevated circulating concentrations of fibroblast growth factor 21 and changes in BAT gene expression consistent with heat production through increased peroxisomal lipid oxidation. Other molecular adaptations predict additional cellular inefficiencies with an increase in both protein synthesis and turnover, and mitochondria with reduced reliance on mitochondrial-encoded gene expression and increased expression of nuclear-encoded mitochondrial genes. These data suggest that BAd-CRISPR is an efficient tool to speed discoveries in adipose tissue biology.  相似文献   

14.
The paraneoplastic syndrome of cachexia is considered a degenerative chronic inflammatory disease, being deeply related to the increase of pro‐inflammatory factors, especially tumour necrosis factor alpha (TNF‐α). It is known that the adipose tissue is affected by cachexia and contributing with the secretion of pro‐inflammatory factors which reach the adjacent tissues and the circulation. The effect of pro‐inflammatory factors is balanced by the effect of anti‐inflammatory factors, such as interleukin 10 (IL‐10). The IL‐10/TNF‐α ratio has been recently postulated as a marker for the assessment of the degree of inflammation, which correlates with disease‐associated morbidity and mortality. In order to counteract inflammation in chronic disease, our group has currently adopted chronic endurance exercise in models of cancer cachexia and chronic heart failure. Since it is clear that white adipose tissue is strongly implicated in the secretion of both pro‐ and anti‐inflammatory factors in disease, we chose to address its contribution to cachexia‐related inflammation and the effect of endurance training on the capacity of cytokine expression and secretion by this tissue. Our results show an enhancement of IL‐10 adipose tissue content, and increased IL‐10/TNF‐α ratio induced by endurance training. The mechanisms are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The role of PPARs in the regulation of human adipose tissue secretome has received little attention despite its potential importance in the therapeutic actions of PPAR agonists. Here, we have investigated the effect of selective PPARgamma, PPARalpha, and PPARbeta/delta agonists on the production of adipokines by human subcutaneous adipose tissue. Antibody arrays were used to measure secreted factors in media from cultured adipose tissue explants. Sixteen proteins were produced in significant amounts. Activation of PPARs regulated the production of five proteins. Treatments with the three PPAR agonists decreased the secretion of leptin and interleukin-6. PPARalpha and beta/delta agonists markedly enhanced hepatocyte growth factor secretion whereas PPARbeta/delta down-regulated angiogenin and up-regulated TIMP-1 release. Hepatocyte growth factor, interleukin-6, and TIMP-1 are chiefly expressed in cells from the stromal vascular fraction whereas angiogenin is expressed in both adipocytes and cells from the stromal vascular fraction. Our data show that PPAR agonists modulate secretion of bioactive molecules from the different cell types composing human adipose tissue.  相似文献   

16.
17.
18.
The distribution of the uncoupling protein (UCP) in brown adipocyte mitochondria of the hibernant Muscardinus avellanarius was obtained by ultrastructural immunocytochemistry. In both cryosections and sections of Lowicryl-embedded material UCP was localized in the mitochondrial cristae of brown adipocytes, but not in liver mitochondria. It should now be possible to easily identify the morphology of cells committed to BAT differentiation in the tissue as well as in cell culture.  相似文献   

19.
M E Lean  W P James 《FEBS letters》1983,163(2):235-240
A protein of Mr 32 000 has been isolated from human infant brown adipose tissue mitochondria following the procedure used to purify the uncoupling protein from rat brown adipose tissue mitochondria. A specific antiserum has been raised against the human 32 kDa protein, and used to detect it by probing mitochondrial proteins separated by SDS-PAGE. The protein is present in large amounts in brown adipose tissue but is undetectable in human liver, heart or white adipose tissue. It has strong immunological cross-reactivity with rat brown adipose tissue uncoupling protein.  相似文献   

20.
《Cell metabolism》2021,33(8):1640-1654.e8
  1. Download : Download high-res image (196KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号