首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoinositide 3-Kinases (PI3-Kinases) are a family of dual specificity enzymes with a unique lipid kinase activity toward the D-3 position of the inositol ring of phosphoinositides and a less well characterized serine/threonine protein kinase activity. Class IA PI3-Kinases comprise a 110-120 kDa catalytic subunit (usually termed p110) and an 85 kDa or 50 to 55 kDa regulatory subunit (often called p85). cDNAs for three mammalian Class IA PI3-Kinase catalytic subunits designated p110alpha, p110beta, and p110delta have been cloned from several species. A YAC clone for the human p110alpha gene has also been cloned and mapped to chromosome 3q26.3. However, structural organization for any of the PI3-Kinase p110alpha genes has not been reported. Here, we report the cloning, structural organization, and chromosomal localization of the mouse PI3-Kinase p110alpha gene. The translated portion of the mouse p110alpha gene is encoded by 19 exons that span at least 24 kb. Dual color fluorescence in situ hybridization (FISH) was performed to determine the chromosomal localization of the mouse PI3-Kinase p110alpha gene. FISH results and DAPI banding demonstrated localization of the p110alpha gene to band B on mouse chromosome 3, a region syntenic with human chromosome 3q26.3.  相似文献   

2.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

3.
Activation of p85/p110-type phosphatidylinositol (PI) kinase has been implicated in various cellular activities. This PI kinase phosphorylates the D-4 position with a similar or higher efficiency than the D-3 position when trichloroacetic acid-treated cell membrane is used as a substrate, although it phosphorylates almost exclusively the D-3 position of the inositol ring in phosphoinositides when purified PI is used as a substrate. Furthermore, the lipid kinase activities of p110 for both the D-3 and D-4 positions were completely abolished by introducing kinase-dead point mutations in their lipid kinase domains (DeltaKinalpha and DeltaKinbeta, respectively). In addition, both PI 3- and PI 4-kinase activities of p110alpha and p110beta immunoprecipitates were similarly inhibited by either wortmannin or LY294002, specific inhibitors of p110. Insulin induced phosphorylation of not only the D-3 position, but also the D-4 position. Indeed, overexpression of p110 in Sf9 or 3T3-L1 cells induced marked phosphorylation of the D-4 position to a level comparable to or much greater than that of D-3, whereas inhibition of endogenous p85/p110-type PI kinase via overexpression of dominant-negative p85alpha (Deltap85alpha) in 3T3-L1 adipocytes abolished insulin-induced synthesis of both. Thus, p85/p110-type PI kinase phosphorylates the D-4 position of phosphoinositides more efficiently than the D-3 position in vivo, and each of the D-3- or D-4-phosphorylated phosphoinositides may transmit signals downstream.  相似文献   

4.
Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85alpha regulatory subunit yields three splicing variants, p85alpha, AS53/p55alpha, and p50alpha. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110alpha catalytic subunit. PI 3-kinase activity associated with p50alpha was greater than that associated with p85alpha or AS53. Increasing the level of p85alpha or AS53, but not p50alpha, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85alpha mutant lacking the p110-binding site (Deltap85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70(S6K)), was decreased in cells expressing p85alpha or AS53 but not in cells expressing p50alpha. Similar inhibition of PI 3-kinase, Akt, and p70(S6K) was observed, even when p110alpha was coexpressed with p85alpha or AS53. Expression of p110alpha alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110alpha was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.  相似文献   

5.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.  相似文献   

6.
Phosphoinositide 3'-kinases (PI3Ks) constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. PI3Ks are heterodimers made up of four different 110-kDa catalytic subunits (p110alpha, p110beta, p110gamma, and p110delta) and a smaller regulatory subunit. Despite a clear implication of PI3Ks in survival signaling, the contribution of the individual PI3K isoforms has not been elucidated. To address this issue, we generated Rat1 fibroblasts that co-express c-Myc and membrane targeted derivates of the different p110 isoforms. Here we present data for the first time showing that activation of PI3-kinase signaling through membrane localization of p110beta, p110gamma, and p110delta protects c-Myc overexpressing Rat1 fibroblasts from apoptosis caused by serum deprivation like it has been described for p110alpha. Expression of each p110 isoform reduces significantly caspase-3 like activity in this apoptosis model. Decreased caspase-3 activity correlates with the increase in Akt phosphorylation in cells that contain one of the myristoylated p110 isoforms. p110 isoform-mediated protection from cell death was abrogated upon expression of a kinase-negative version of Akt.  相似文献   

7.
Class I phosphoinositide 3-kinases (PI3Ks) are bifunctional enzymes possessing lipid kinase activity and the capacity to phosphorylate their catalytic and/or regulatory subunits. In this study, in vitro autophosphorylation of the G protein-sensitive p85-coupled class I(A) PI3K beta and p101-coupled class I(B) PI3K gamma was examined. Autophosphorylation sites of both PI3K isoforms were mapped to C-terminal serine residues of the catalytic p110 subunit (i.e. serine 1070 of p110 beta and serine 1101 of p110 gamma). Like other class I(A) PI3K isoforms, autophosphorylation of p110 beta resulted in down-regulated PI3K beta lipid kinase activity. However, no inhibitory effect of p110 gamma autophosphorylation on PI3K gamma lipid kinase activity was observed. Moreover, PI3K beta and PI3K gamma differed in the regulation of their autophosphorylation. Whereas p110 beta autophosphorylation was stimulated neither by G beta gamma complexes nor by a phosphotyrosyl peptide derived from the platelet-derived growth factor receptor, autophosphorylation of p110 gamma was significantly enhanced by G beta gamma in a time- and concentration-dependent manner. In summary, we show that autophosphorylation of both PI3K beta and PI3K gamma occurs in a C-terminal region of the catalytic p110 subunit but differs in its regulation and possible functional consequences, suggesting distinct roles of autophosphorylation of PI3K beta and PI3K gamma.  相似文献   

8.
The Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositides. Although closely related, experimental evidence suggests that the four Class I PI3Ks may be functionally distinct. To further study their unique biochemical properties, the three human Class Ia PI3K (alpha, beta, and delta) p110 catalytic domains were cloned and co-expressed with the p85alpha regulatory domain in Sf9 cells. None of the p110 subunits were successfully expressed in the absence of p85alpha. Successful expression and purification of each p85alpha/p110 protein required using an excess of the p110 vector over the p85 vector during co-infection of Sf9 cells. Proteins were purified as the p85alpha/p110 complex by nickel affinity chromatography through an N-terminal His-tag on the p110 subunit using an imidazole gradient. The purification yields were high using the optimized ratio of p85/p110 vector and small culture volumes, with 24mg/L cell culture media for p85alpha/p110alpha, 17.5mg/L for p85alpha/p110delta, and 3.5mg/L for p85alpha/p110beta. The identity of each purified isoform was confirmed by mass spectral analysis and immunoblotting. The activities of the three p85alpha/p110 proteins and the Class Ib p110gamma catalytic domain were investigated using phosphatidylinositol 4,5-bisphosphate (PIP2) as the substrate in a PIP2/phosphatidylserine (PS) liposome. All four enzymes exhibited reaction velocities that were dependent on the surface concentration of PIP2. The surface concentrations that gave maximal activity for each human isoform with 0.5mM PIP2 were 2.5mol% PIP2 for p110gamma, 7.5mol% for p85alpha/p110beta, and 10mol% PIP2 for p85alpha/p110alpha and p85alpha/p110delta. The specific activity of p85alpha/p110alpha was three to five times higher than that of the other human isoforms. These kinetic differences may contribute to the unique roles of these isoforms in cells.  相似文献   

9.
PAR-2 (protease-activated receptor 2) is a GPCR (G-protein-coupled receptor) that can elicit both G-protein-dependent and -independent signals. We have shown previously that PAR-2 simultaneously promotes Galphaq/Ca2+-dependent activation and beta-arrestin-1-dependent inhibition of class IA PI3K (phosphoinositide 3-kinase), and we sought to characterize further the role of beta-arrestins in the regulation of PI3K activity. Whereas the ability of beta-arrestin-1 to inhibit p110alpha (PI3K catalytic subunit alpha) has been demonstrated, the role of beta-arrestin-2 in PI3K regulation and possible differences in the regulation of the two catalytic subunits (p110alpha and p110beta) associated with p85alpha (PI3K regulatory subunit) have not been examined. In the present study we have demonstrated that: (i) PAR-2 increases p110alpha- and p110beta-associated lipid kinase activities, and both p110alpha and p110beta are inhibited by over-expression of either beta-arrestin-1 or -2; (ii) both beta-arrestin-1 and -2 directly inhibit the p110alpha catalytic subunit in vitro, whereas only beta-arrestin-2 directly inhibited p110beta; (iii) examination of upstream pathways revealed that PAR-2-induced PI3K activity required the small GTPase Cdc (cell-division cycle)42, but not tyrosine phosphorylation of p85; and (iv) beta-arrestins inhibit PAR-2-induced Cdc42 activation. Taken together, these results indicated that beta-arrestins could inhibit PAR-2-stimulated PI3K activity, both directly and through interference with upstream pathways, and that the two beta-arrestins differ in their ability to inhibit the p110alpha and p110beta catalytic subunits. These results are particularly important in light of the growing interest in PAR-2 as a pharmacological target, as commonly used biochemical assays that monitor G-protein coupling would not screen for beta-arrestin-dependent signalling events.  相似文献   

10.
Phosphatidylinositol-3 kinase (PI3K) is a family of enzymes that phosphorylates the D3 position of phosphoinositides in membranes which can then act as a second messenger and affect many essential cellular processes such as survival, proliferation and differentiation. Class IA PI3K is composed of two subunits: a regulatory subunit, p85, and a catalytic subunit, p110. The p85 subunit is composed of several adapter domains which, upon interaction with the appropriate molecules, transmit the signal to activate p110. We have used the spontaneously immortalized oligodendrocyte cell line, CG4, to examine the role of PI3K in maturation of the oligodendrocyte. We show that overexpression of the p85 subunit enhances expression of myelin basic protein (MBP) upon differentiation of CG4 cells and primary oligodendrocytes. In experiments in CG4 cells, neither cotransfection with the tumor suppressor PTEN, which dephosphorylates the D3 position of phosphoinositides, nor inhibition of PI3K activity with wortmannin mimics this effect. Further, we have shown that this effect is dependent on the coexpression of the two SH2 domains within p85. Thus, the p85-mediated enhancement of MBP promoter activity in oligodendrocytes appears to be independent of PI3K activity and dependent on the adapter functions of the p85 subunit's SH2 domains.  相似文献   

11.
Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.  相似文献   

12.
One potentially important mechanism for regulating class Ia phosphoinositide 3-kinase (PI 3-kinase) activity is autophosphorylation of the p85 alpha adapter subunit on Ser608 by the intrinsic protein kinase activity of the p110 catalytic subunit, as this downregulates the lipid kinase activity in vitro. Here we investigate whether this phosphorylation can occur in vivo. We find that p110 alpha phosphorylates p85 alpha Ser608 in vivo with significant stoichiometry. However, p110 beta is far less efficient at phosphorylating p85 alpha Ser608, identifying a potential difference in the mechanisms by which these two isoforms are regulated. The p85 alpha Ser608 phosphorylation was increased by treatment with insulin, platelet-derived growth factor, and the phosphatase inhibitor okadaic acid. The functional effects of this phosphorylation are highlighted by mutation of Ser608, which results in reduced lipid kinase activity and reduced association of the p110 alpha catalytic subunit with p85 alpha. The importance of this phosphorylation was further highlighted by the finding that autophosphorylation on Ser608 was impaired, while lipid kinase activity was increased, in a p85 alpha mutant recently discovered in human tumors. These results provide the first evidence that phosphorylation of Ser608 plays a role as a shutoff switch in growth factor signaling and contributes to the differences in functional properties of different PI 3-kinase isoforms in vivo.  相似文献   

13.
Calorie restriction [CR; 60% of ad libitum (AL) intake] improves insulin-stimulated glucose transport, concomitant with enhanced phosphorylation of Akt. The mechanism(s) for the CR-induced increase in Akt phosphorylation of insulin-stimulated muscle is unknown. The purpose of this study was to determine whether CR increased the ratio of catalytic to regulatory subunits favoring enhanced phosphatidylinositol (PI) 3-kinase signaling, which may contribute to increases in Akt phosphorylation and glucose transport in insulin-stimulated muscles. We measured the PI 3-kinase regulatory (p85alpha/beta, p50alpha, and p55alpha) and catalytic (p110) subunits abundance in skeletal muscle from male F344B/N rats after 8 wk of AL or CR treatment. In CR compared with AL muscles, regulatory isoforms, p50alpha and p55alpha abundance were approximately 40% lower (P < 0.01) with unchanged p85alpha/beta levels. There was no diet-related change in catalytic subunit abundance. Despite lower IRS-1 levels ( approximately 35%) for CR vs. AL, IRS-1-p110 association in insulin-stimulated muscles was significantly (P < 0.05) enhanced by approximately 50%. Downstream of PI 3-kinase, CR compared with AL significantly enhanced Akt serine phosphorylation by 1.5-fold higher (P = 0.01) and 3-O-methylglucose transport by approximately 20% in muscles incubated with insulin. The increased ratio of PI 3-kinase catalytic to regulatory subunits favors enhanced insulin signaling, which likely contributes to greater Akt phosphorylation and improved insulin sensitivity associated with CR in skeletal muscle.  相似文献   

14.
Ventricular cardiomyocytes and cardiac tissue of lean and genetically obese (fa/fa) Zucker rats were used 1) to study the role of the p85 regulatory subunit isoforms p85 alpha and p85 beta for insulin signaling through the phosphatidylinositol (PI) 3-kinase pathway, and 2) to elucidate the implications of these mechanisms for cardiac insulin resistance. Western blot analysis of cardiomyocyte lysates revealed expression of p85 alpha and p85 beta but no detectable amounts of the splice variants of p85 alpha. Essentially no p85 alpha subunit of PI 3-kinase was found to be associated with insulin receptor substrate (IRS)-1 or IRS-2 in basal and insulin-stimulated (5 min) cardiomyocytes. Instead, insulin produced a twofold increase in p85 beta associated with IRS-1, leading to a three- to fourfold increase in p85 beta-associated PI 3-kinase activity. This response was significantly reduced in obese animals. Comparable results were obtained in the intact heart after in vivo stimulation. In GLUT-4-containing vesicles, an increased abundance (3.7 +/- 0.7-fold over basal) of p85 alpha was observed after insulin stimulation of lean animals, with no significant effect in the obese group. No p85 beta could be detected in GLUT-4-containing vesicles. Recruitment of the p110 catalytic subunit of PI 3-kinase and a twofold increase in enzyme activity in GLUT-4-containing vesicles by insulin was observed only in lean rats. We conclude that, in the heart, p85 alpha recruits PI 3-kinase activity to GLUT-4 vesicles, whereas p85 beta represents the main regulator of IRS-1- and IRS-2-mediated PI 3-kinase activation. Furthermore, multiple defects of PI 3-kinase activation, involving both the p85 alpha and the p85 beta adaptor subunits, may contribute to cardiac insulin resistance.  相似文献   

15.
Phosphoinositide 3-kinases (PI3Ks) play an important role in a variety of cellular functions, including phagocytosis. PI3Ks are activated during phagocytosis induced by several receptors and have been shown to be required for phagocytosis through the use of inhibitors such as wortmannin and LY294002. Mammalian cells have multiple isoforms of PI3K, and the role of the individual isoforms during phagocytosis has not been addressed. The class I PI3Ks consist of a catalytic p110 isoform associated with a regulatory subunit. Mammals have three genes for the class IA p110 subunits encoding p110alpha, p110beta, and p110delta and one gene for the class IB p110 subunit encoding p110gamma. Here we report a specific recruitment of p110beta and p110delta (but not p110alpha) isoforms to the nascent phagosome during apoptotic cell phagocytosis by fibroblasts. By microinjecting inhibitory antibodies specific to class IA p110 subunits, we have shown that p110beta is the major isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary mouse macrophages. Macrophages from mice expressing a catalytically inactive form of p110delta showed no defect in the phagocytosis of apoptotic cells and IgG-opsonized particles, confirming the lack of a major role for p110delta in this process. Similarly, p110gamma-deficient macrophages phagocytosed apoptotic cells normally. Our findings demonstrate that p110beta is the major class I catalytic isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary macrophages.  相似文献   

16.
Phosphatidylinositide-3-kinases (PI3K) initiate a number of signaling pathways by recruiting other kinases, such as Akt, to the plasma membrane. One of the isoforms, PI3K&alpha;, is an oncogene frequently mutated in several cancer types. These mutations increase PI3K kinase activity, leading to increased cell survival, cell motility, cell metabolism, and cell cycle progression. The structure of the complex between the catalytic subunit of PI3K&alpha;, p110&alpha;, and a portion of its regulatory subunit, p85&alpha; reveals that the majority of the oncogenic mutations occur at the interfaces between p110 domains and between p110 and p85 domains. At these positions, mutations disrupt interactions resulting in changes in the kinase domain that may increase enzymatic activity. The structure also suggests that interaction with the membrane is mediated by one of the p85 domains (iSH2). These findings may provide novel structural loci for the design of new anti-cancer drugs.  相似文献   

17.
Class Ia phosphoinositide (PI) 3-kinase is a central component in growth factor signaling and is comprised of a p110 catalytic subunit and a regulatory subunit, the most common family of which is derived from the p85alpha gene (Pik3r1). Optimal signaling through the PI 3-kinase pathway depends on a critical molecular balance between the regulatory and catalytic subunits. In wild-type cells, the p85 subunit is more abundant than p110, leading to competition between the p85 monomer and the p85-p110 dimer and ineffective signaling. Heterozygous disruption of Pik3r1 results in increased Akt activity and decreased apoptosis by insulin-like growth factor 1 (IGF-1) through up-regulated phosphatidylinositol (3,4,5)-triphosphate production. Complete depletion of p85alpha, on the other hand, results in significantly increased apoptosis due to reduced PI 3-kinase-dependent signaling. Thus, a reduction in p85alpha represents a novel therapeutic target for enhancing IGF-1/insulin signaling, prolongation of cell survival, and protection against apoptosis.  相似文献   

18.
Studies ex vivo have shown that phosphoinositide 3-kinase (PI3K) activity is necessary but not sufficient for insulin-stimulated glucose uptake. Unexpectedly, mice lacking either of the PI3K regulatory subunits p85alpha or p85beta exhibit increased insulin sensitivity. The insulin hypersensitivity is particularly unexpected in p85alpha-/- p55alpha-/- p50alpha-/- mice, where a decrease in p110alpha and p110beta catalytic subunits was observed in insulin-sensitive tissues. These results raised the possibility that decreasing total PI3K available for stimulation by insulin might circumvent negative feedback loops that ultimately shut off insulin-dependent glucose uptake in vivo. Here we present results arguing against this explanation. We show that p110alpha+/- p110beta+/- mice exhibit mild glucose intolerance and hyperinsulinemia in the fasted state. Unexpectedly, p110alpha+/- p110beta+/- mice showed a approximately 50% decrease in p85 expression in liver and muscle. Consistent with this in vivo observation, knockdown of p110 by RNA interference in mammalian cells resulted in loss of p85 proteins due to decreased protein stability. We propose that insulin sensitivity is regulated by a delicate balance between p85 and p110 subunits and that p85 subunits mediate a negative role in insulin signaling independent of their role as mediators of PI3K activation.  相似文献   

19.
We have reported previously that Ras interacts with the catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase) in a GTP-dependent manner. The affinity of the interaction of Ras-GTP with p85alpha/p110alpha is shown here to be approximately 150 nM. The site of interaction on the p110alpha and beta isoforms of PI 3-kinase lies between amino acid residues 133 and 314. A point mutation in this region, K227E, blocks the GTP-dependent interaction of PI 3-kinase p110alpha with Ras in vitro and the ability of Ras to activate PI 3-kinase in intact cells. In addition, this mutation elevates the basal activity of PI 3-kinase in intact cells, suggesting a direct influence of the Ras binding site on the catalytic activity of PI 3-kinase. Using an in vitro reconstitution assay, it is shown that the interaction of Ras-GTP, but not Ras-GDP, with PI 3-kinase leads to an increase in its enzymatic activity. This stimulation is synergistic with the effect of tyrosine phosphopeptide binding to p85, particularly at suboptimal peptide concentrations. These data show that PI 3-kinase is regulated by a number of mechanisms, and that Ras contributes to the activation of this lipid kinase synergistically with tyrosine kinases.  相似文献   

20.
The class I(A) phosphoinositide 3-kinases (PI3Ks) consist of a 110-kDa catalytic domain and a regulatory subunit encoded by the p85alpha, p85beta, or p55gamma genes. We have determined the effects of disrupting the p85alpha gene on the responses of mast cells stimulated by the cross-linking of Kit and FcepsilonRI, receptors that reflect innate and adaptive responses, respectively. The absence of p85alpha gene products partially inhibited Kit ligand/stem cell factor-induced secretory granule exocytosis, proliferation, and phosphorylation of the serine/threonine kinase Akt. In contrast, p85alpha gene products were not required for FcepsilonRI-initiated exocytosis and phosphorylation of Akt. LY294002, which inhibits all classes of PI3Ks, strongly suppressed Kit- and FcepsilonRI-induced responses in p85alpha -/- mast cells, revealing the contribution of another PI3K family member(s). In contrast to B lymphocytes, mast cell proliferation was not dependent on Bruton's tyrosine kinase, a downstream effector of PI3K, revealing a distinct pathway of PI3K-dependent proliferation in mast cells. Our findings represent the first example of receptor-specific usage of different PI3K family members in a single cell type. In addition, because Kit- but not FcepsilonRI-initiated signaling is associated with mast cell proliferation, the results provide evidence that distinct biologic functions signaled by these two receptors may reflect differential usage of PI3Ks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号