首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of 2'-modified oligonucleotides from 2'-methoxyoxalamido (MOX) and 2'-succinimido (SUC) precursors is described. Their physical and biochemical properties were assessed. Synthesized oligonucleotides were used as primers in advanced DNA sequencing protocols. An example of sequencing directly off genomic DNA template without prior cloning or PCR amplification is presented.  相似文献   

2.
The preparation of two novel 2'-O-alkyl phosphoramidites bearing 1,2-diol and hydrazide functions for a chemoselective ligation is described. The former amidite was used to obtain 2'-modified oligodeoxyribonucleotides, which can be later oxidised by NaIO4 to generate 2'-aldehyde oligonucleotides. These were successfully conjugated to acceptor molecules. The latter amidite also showed good coupling yields, but the hydrazide function was demonstrated to be labile under basic deprotection conditions.  相似文献   

3.
We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.  相似文献   

4.
Infidelity of DNA synthesis by reverse transcriptase   总被引:3,自引:0,他引:3  
The fidelity of purified DNA polymerase from avian myeloblastosis virus in precisely copying polynucleotide templates was determined. With poly (dA-dT) · poly (dA-dT) as a template, one molecule of the incorrect basepaired nucleotide (dCTP) is incorporated for every 6000 nucleotides polymerized. When copying the ribo strand of poly (rA) · poly (dT) the error rate is approximately one in 600. It is suggested that the enzyme makes similar errors invivo and thus could be mutagenic.  相似文献   

5.
Oligonucleotides carrying 2'-aldehyde groups were synthesized and coupled to peptides containing an N-terminal cysteine, aminooxy or hydrazide group to give peptide-oligonucleotide conjugates in good yield. The synthesis of a novel phosphoramidite reagent for the incorporation of 2'-O-(2,3-diaminopropyl)uridine into oligonucleotides was also described. Resultant 2'-diaminooligonucleotides may be useful intermediates in further peptide conjugation studies.  相似文献   

6.
High-cost of oligonucleotides is one of the major problems to low-cost gene synthesis. Although DNA oligonucleotides from cleavable DNA microchips has been adopted for the low-cost gene synthesis, construction of DNA molecules larger than 1 kb has been largely hampered due to the difficulties of DNA assembly associated with the negligible quantity of chip oligonucleotides. Here we report a hierarchical method for the synthesis of large genes using oligonucleotides from programmable DNA microchips. Using this hierarchical method, we successfully synthesized 1056 bp Dpo4 and 2325 bp Pfu DNA polymerase genes as models. This hierarchical strategy can be further expanded for the syntheses of multiple large genes in a scalable manner.  相似文献   

7.
Template switching by reverse transcriptase during DNA synthesis.   总被引:25,自引:12,他引:13       下载免费PDF全文
G X Luo  J Taylor 《Journal of virology》1990,64(9):4321-4328
  相似文献   

8.
A method for synthesizing DNA from 40-mer oligonucleotides, which we used to generate a 32-kb DNA fragment, is explained. DNA sequences are synthesized as approximately 500 bp fragments (synthons) in a two-step PCR reaction and cloned using ligation-independent cloning (LIC). Synthons are then assembled into longer full-length sequences in a stepwise manner. By initially synthesizing smaller fragments (synthons), the number of clones sequenced is low compared with synthesizing complete multi-kilobase DNA sequences in a single step. LIC eliminates the need for purification of fragments before cloning, making the process amenable to high-throughput operation and automation. Type IIs restriction enzymes allow seamless assembly of synthons without placing restrictions on the sequence being synthesized. Synthetic fragments are assembled in pairs to generate the final construct using vectors that allow selection of desired clones with two unique antibiotic resistance markers, and this eliminates the need for purification of fragments after digestion with restriction endonucleases.  相似文献   

9.
The target ferrocene-labeled dideoxynucleotide compound 5-[N-(beta-ferrocenyl-propanoyl)3-amino-propyn-1-yl]-2',3'-dideoxyuridine 5'-triphosphate, Fc-ddUTP, was synthesized and tested with terminal deoxynucleotidyl transferase for enzymatic 3'-redox-active end-labeling of 5'-phosphorylated single-stranded oligodeoxynucleotides. Starting from readily available 5-iodouridine and 3-ferrocenylpropanoic acid, the synthetic strategy elaborated here follows a mild multistep route. Each step involves reliable methods, and all ferrocene intermediates can be easily purified. Enzymatic 3'-ferrocene end-labeling of 5'-phosphorylated oligonucleotides is remarkably efficient, and 3'-ferrocene-labeled oligonucleotides can thus be prepared in sufficient amounts for further use in surface modifications.  相似文献   

10.
We demonstrate a new method for making oligonucleotide microarrays by synthesis in situ. The method uses conventional DNA synthesis chemistry with an electrochemical deblocking step. Acid is delivered to specific regions on a glass slide, thus allowing nucleotide addition only at chosen sites. The acid is produced by electrochemical oxidation controlled by an array of independent microelectrodes. Deblocking is complete in a few seconds, when competing side-product reactions are minimal. We demonstrate the successful synthesis of 17mers and discrimination of single base pair mismatched hybrids. Features generated in this study are 40 μm wide, with sharply defined edges. The synthetic technique may be applicable to fabrication of other molecular arrays.  相似文献   

11.
12.
13.
The use of 1-[3-O-(2-cyanoethyl-N,N-diisopropylphosphor amidityl)propyl]ferrocene and 1-[3-O-dimethoxytrityl propyl]-1'-[3'-O-(2-cyanoethyl-N,N-diisopropylphosphoramidityl) propyl] ferrocene as reactive synthons for DNA/RNA synthesizer allows to generate ferrocene-labelled oligonucleotides with remarkable DNA detection properties.  相似文献   

14.
The Km and Vmax values for d(pT)8 and its derivatives containing various 5'-end groups were estimated in the reaction of polymerization catalyzed with AMV-RT and FK. The change in affinity of modified primers was more pronounced in the case of AMV-RT than in the case of FK. Introducing in d(pT)8 of intercalators such as phenazinium, ethidium and daunomycin residues results in 2.7-, 8.7- and 11-fold increases in the primer affinity to AMV-RT, respectively. However, in the case of hemin and cholesterol derivatives the Km values were 3 and 5 times higher than those for d(pT)8. Compared to d(pT)8, the affinity of FK to all the above analogs was 2.3-3.6 times higher with the exception of cholesterol derivative to which it was 2.4-fold lower. The effect of the 5'-end residues on the Vmax values of d(pT)8 was small and ranged from 44% to 120% of that for d(pT)8. Therefore such reactive derivatives of oligonucleotides can be used as effective primers of AMV-RT and FK. Possible reasons for various effects of the 5'-end residues of the primer on its interaction with FK or AMV-RT in the presence of poly(A) are discussed.  相似文献   

15.
16.
17.
BACKGROUND: Single-stranded oligonucleotides (ssODN) can induce site-specific genetic alterations in selected mammalian cells, but the involved mechanisms are not known. METHODS: We corroborate the potential of genomic sequence correction by ssODN using chromosomally integrated mutated enhanced green fluorescent protein (mEGFP) reporter genes in CHO cell lines. The role of integration site was studied in a panel of cell clones with randomly integrated reporters and in cell lines with site-specific single copy integration of the mEGFP reporter in opposite orientations. Involvement of end modification was examined on ssODN with unprotected or phosphorothioate (PS) protected ends. Also ssODN containing octyl or hexaethylene glycol (HEG) end blocking groups were tested. The significance of DNA synthesis was investigated by cell cycle analysis and by the DNA polymerases alpha, delta and epsilon inhibitor aphidicolin. RESULTS: Correction rates of up to 5% were observed upon a single transfection of ssODN. Independent of the mEGFP chromosomal integration site and of its orientation towards the replication fork, antisense ssODN were more effective than sense ssODN. When ssODN ends were blocked by either octyl or HEG groups, correction rates were reduced. Finally, we demonstrate a dependence of the process on DNA synthesis. CONCLUSIONS: We show that, on a chromosomal level, the orientation of the replication fork towards the targeted locus is not central in the strand bias of ssODN-based targeted sequence correction. We demonstrate the importance of accessible ssODN ends for sequence alteration. Finally, we provide evidence for the involvement of DNA synthesis in the process.  相似文献   

18.
19.
20.
Herein we report a short and efficient synthesis of N(6)-substituted 5'-modified adenosines, which was achieved in four steps from 2',3',5'-tris-O-(tert-butyldimethylsilyl)inosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号