首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
These studies examined the structural specificity for guanine nucleotide-facilitated hormonal activation and guanine nucleotide stabilization of cardiac adenylate cyclase. 1. The phosphonate analogues of GTP, p[CH(2)]ppG (guanosine 5'-[betagamma-methylene]-triphosphate) and pp[CH(2)]pG (guanosine 5'-[alphabeta-methylene]triphosphate), were the most effective activators of adenylate cyclase. Other nucleotides producing significant activation (P<0.01) were, in decreasing order of activation: ITP, GDP, GMP, GTP, XTP, CTP, p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate), dGTP and 2'-O-methyl-GTP. Guanosine, cyclic GMP, UTP and ppppG (guanosine tetraphosphate) had no effect, and 7-methyl-GTP caused a decrease in the activity. 2. Preincubation of membranes at 37 degrees C for 15min before assay at 24 degrees C produced an 80% decrease in adenylate cyclase activity, and preincubation with p[CH(2)]ppG and pp[CH(2)]pG protected and resulted in a net increase in activity. Other nucleotides that completely or partially preserved activity in decreasing order of effectiveness were p[NH]ppG, GDP, GTP, dGTP, ITP, ppppG, 2'-O-methyl-GTP, GMP, CTP and XTP. Several compounds had no effect, including guanosine, cyclic GMP and UTP, whereas preincubation with 7-methyl-GTP produced a further decrease (P<0.05) in activity. 3. The concentration-dependence for activation and stabilization by the naturally occurring guanine nucleotides was examined in the absence of a regenerating system and revealed GMP to have no stabilizing effect and to be less potent than either GDP or GTP in activating adenylate cyclase. 4. A significant correlation (r=0.90) was found between the properties of activation and stabilization for the compounds examined. These findings are consistent with there being a single nucleotide site through which both the activation and stabilization of adenylate cyclase are mediated.  相似文献   

2.
The non-differentiated HL60 cell can be stimulated to secrete when Ca2+ and guanosine 5'-[gamma-thio]-triphosphate (GTP gamma S) are introduced into streptolysin-O-permeabilized cells. Secretion is accompanied by activation of polyphosphoinositide phosphodiesterase (PPI-pde). Both responses show a concentration-dependence on Ca2+ between pCa 8 and pCa 5. The half-maximal requirements for Ca2+ for PPI-pde activation and secretion are pCa 6.4 +/- 0.1 and pCa 6.2 +/- 0.2 respectively. The rank order of potency of the GTP analogues to stimulate PPI-pde activation and secretion is similar; GTP gamma S greater than guanosine 5'-[beta gamma-imido]-triphosphate greater than guanosine 5'-[beta gamma-methylene]triphosphate greater than XTP approximately equal to ITP, but the maximal response achieved by each compound compared with GTP gamma S is much greater for secretion than for PPI-pde activation. A dissociation of the two responses is obtained with 10 mM-XTP and -ITP; secretion is always observed but not inositol trisphosphate formation at this concentration. GTP, dGTP, UTP and CTP are inactive for both secretion and PPI-pde activation. Both GDP and dGDP are competitive inhibitors of both GTP gamma S-induced secretion and PPI-pde activation. Phorbol 12-myristate 13-acetate could not fully substitute for GTP gamma S in stimulating secretion, suggesting that the effect of GTP gamma S cannot result simply from the generation of diacylglycerol. In the absence of MgATP, secretion and PPI-pde activation is still evident, albeit at a reduced level. This also supports the hypothesis that protein kinase C-dependent phosphorylation is not essential for secretion. The effect of MgATP is to enhance secretion, and to reduce both the Ca2+ and GTP gamma S requirement for secretion. In conclusion, two roles for guanine nucleotides can be identified; one for activating PPI-pde (GP) and the other for activating exocytosis (GE), acting in series.  相似文献   

3.
The relationship between catecholamine secretion and arachidonic acid release from digitonin-treated chromaffin cells was investigated. Digitonin renders permeable the plasma membranes of bovine adrenal chromaffin cells to Ca2+, ATP, and proteins. Digitonin-treated cells undergo exocytosis of catecholamine in response to micromolar Ca2+ in the medium. The addition of micromolar Ca2+ to digitonin-treated chromaffin cells that had been prelabeled with [3H]arachidonic acid caused a marked increase in the release of [3H]arachidonic acid. The time course of [3H]arachidonic acid release paralleled catecholamine secretion. Although [3H]arachidonic acid release and exocytosis were both activated by free Ca2+ in the micromolar range, the activation of [3H]arachidonic acid release occurred at Ca2+ concentrations slightly lower than those required to activate exocytosis. Pretreatment of the chromaffin cells with N-ethylmaleimide (NEM) or p-bromophenacyl bromide (BPB) resulted in dose-dependent inhibition of 10 microM Ca2+-stimulated [3H]arachidonic acid release and exocytosis. The IC50 of NEM for both [3H]arachidonic acid release and exocytosis was 40 microM. The IC50 of BPB for both events was 25 microM. High concentrations (5-20 mM) of Mg2+ caused inhibition of catecholamine secretion without altering [3H]arachidonic acid release. A phorbol ester that activates protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused enhancement of both [3H]arachidonic acid release and exocytosis. The findings demonstrate that [3H]arachidonic acid release is stimulated during catecholamine secretion from digitonin-treated chromaffin cells and they are consistent with a role for phospholipase A2 in exocytosis from chromaffin cells. Furthermore the data suggest that protein kinase C can modulate both arachidonic acid release and exocytosis.  相似文献   

4.
The relationship between phospholipase A2 and C activation and secretion was investigated in intact human neutrophils and differentiated HL60 cells. Activation by either ATP or fMetLeuPhe leads to [3H]arachidonic acid release into the external medium from prelabelled cells. This response was inhibited when the cells were pretreated with pertussis toxin. When the [3H]arachidonic acid-labelled cells were stimulated with fMetLeuPhe, ATP or Ca2+ ionophore A23187, and the lipids analysed by t.l.c., the increase in free fatty acid was accompanied by decreases in label from phosphatidylinositol and phosphatidylcholine. Moreover, incorporation of label into triacylglycerol and to a lesser extent phosphatidylethanolamine was evident. Activation of secretion was evident with ATP and fMetLeuPhe but not with A23187. The pharmacological specificity of the ATP receptor in HL60 cells was investigated by measuring secretion of beta-glucuronidase, formation of inositol phosphatases and release of [3H]arachidonic acid. External addition of ATP, UTP, ITP, adenosine 5'-[gamma-thio]triphosphate (ATP[S]), adenosine 5'-[beta gamma-imido]triphosphate (App[NH]p), XTP, CTP, GTP, 8-bromo-ATP and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) to intact HL60 cells stimulated inositol phosphate production, but only the first five nucleotides were effective at stimulating secretion or [3H]arachidonic acid release. In human neutrophils, addition of ATP, ITP, UTP and ATP[S] also stimulated secretion from specific and azurophilic granules, and this was accompanied by increases in cytosolic Ca2+ and in [3H]arachidonic acid release. The addition of phorbol 12-myristate 13-acetate (PMA; 1 nM) prior to the addition of either fMetLeuPhe or ATP led to inhibition of phospholipase C activity. In contrast, this had no effect on phospholipase A2 activation, whilst secretion was potentiated. Phospholipase A2 activation by either agonist was dependent on an intact cell metabolism, as was secretion. It is concluded that (1) activation of phospholipase C does not always lead to activation of phospholipase A2, (2) phospholipase A2 is coupled to the receptor independently of phospholipase C via a pertussis-toxin-sensitive G-protein and (3) for secretion to take place, the receptor has to activate both phospholipases C and A2.  相似文献   

5.
The role of guanine nucleotides in catecholamine secretion was investigated in alpha-toxin-permeabilized chromaffin cells. The stable GTP analogues, GTP-gamma-S (guanosine 5'-(gamma-thio)triphosphate) and GMP-PNP (guanosine 5'-(beta,gamma-imido)triphosphate), potentiated calcium-evoked catecholamine release in a dose-dependent manner. This effect was reversed by GDP-beta-S (guanosine 5'-(beta-thio)diphosphate) indicating that a GTP-binding protein plays a modulatory role in the calcium-dependent secretory process in chromaffin cells. Calcium and the phosphorylating nucleotide ATP were both necessary for secretion, even in the presence of GTP analogues, suggesting that the activation of a GTP-regulatory protein alone does not trigger exocytosis in these cells. TPA (12-O-tetradecanoylphorbol-13-acetate), a direct activator of protein kinase C, was found to mimic the effects of the GTP analogues, inducing a dose-dependent potentiation of the calcium-evoked release in alpha-toxin-permeabilized cells. Treatment of the permeabilized cells with sphingosine, a potent inhibitor of protein kinase C, completely abolished the stimulatory effects of both TPA and GTP-gamma-S. Moreover, long term incubation of chromaffin cells with TPA, a treatment which depletes cells of protein kinase C activity, suppressed the stimulatory effects of GTP-gamma-S. Protein kinase C is activated when it becomes membrane-bound in the presence of calcium and diacylglycerol; here, GTP-gamma-S was found to enhance the calcium-induced translocation of protein kinase C to membranes in alpha-toxin-permeabilized cells. These results suggest that guanine nucleotides modulate secretion by activating protein kinase C-linked events in chromaffin cells. Furthermore, the potentiation of calcium-induced secretion in alpha-toxin-permeabilized cells following activation of protein kinase C either directly with TPA or indirectly with GTP analogues provides additional support for the concept that protein kinase C may exert a positive control directly on the intracellular exocytotic machinery.  相似文献   

6.
The zeta subunit of the T cell receptor (TCR) is a prominent substrate for a TCR-activated tyrosine kinase. Tyrosine phosphorylation of the zeta subunit in response to antibody-mediated receptor cross-linking was synergized in permeabilized T cells by either of two non-hydrolyzable GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) or guanosine 5'-[beta, gamma-imido]triphosphate Gpp(NH)p. ATP analogues did not significantly affect antibody-induced tyrosine phosphorylation. Unlike the GTP analogues, the GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP beta S) did not enhance phosphorylation of zeta. The effect induced by the GTP analogues required TCR occupancy and was independent of protein kinase C. Taken together these observations implicate a GTP-binding protein in the modulation of TCR-induced tyrosine phosphorylation.  相似文献   

7.
Several G-proteins (GTP-binding proteins) were identified by SDS/PAGE in the cytosol (105,000 g supernatant) and membrane fractions of the oestrogen-dependent human mammary-tumour cell line ZR-75-1. These proteins, with molecular masses in the range 18-29 kDa, specifically bind [alpha-32P]GTP, which can be displaced by unlabelled GTP, GDP and their non-hydrolysable analogues guanosine 5'-[delta-thio]triphosphate (GTP[S]) and guanosine 5'-[beta-thio]diphosphate (GDP[S]), but not by GMP, ATP, ADP, AMP and other unrelated nucleotides. The apparent dissociation constant for GTP was approx. 2 x 10(-8)M. Homogenization of ZR-75-1 cells in high-salt buffer (1 M-KCl), and successive washing of the membrane fraction, suggested that, among the major G-proteins found, the 18 kDa protein is predominantly soluble, whereas the 27-29 kDa complex is primarily bound to the membrane fraction under the experimental conditions employed. Possible translocation of these G-proteins between membrane and cytosol was analysed. No redistribution of the 27-29 kDa complex was observed, whereas GTP[S] in the presence of Mg2+ caused apparent translocation of the 18 kDa protein to the membrane fraction. This effect was specific for GTP and stable GTP analogues, whereas GDP, GMP, ATP, ADP, AMP and other unrelated nucleotides were ineffective. GTP[S] and guanosine 5'-[beta gamma-imido]-triphosphate (p[NH]ppG) were equally potent (apparent Kd approximately 5 x 10(-6)M), whereas GTP was rather weak. The nucleotide effect is temperature-, time- and concentration-dependent. The translocation process was reversible, slow, and reached its maximum between 30 and 60 min at 37 degrees C. The apparent translocation of this small G-protein from the cytosol to the membrane fraction, and the specific effect of GTP analogues, suggest that this process may have functional significance in mammary-tumour cells.  相似文献   

8.
The effects of guanosine 5'-[beta-thio]diphosphate (GDP[S]) on the kinetics of activation of rat liver membrane adenylate cyclase by guanosine 5'-[beta,gamma-imido]triphosphate (p[NH]ppG) were examined. GDP[S] caused immediate inhibition of the activation by p[NH]ppG at all time points tested. Substantial inhibition by GDP[S] was observed even after the time required for the enzyme to reach its steady-state activity, but the extent of inhibition became progressively smaller as the preincubation time with p[NH]ppG increased. The rate at which adenylate cyclase became quasi-irreversibly activated was a strictly first-order process. In the presence of glucagon, the formation of the irreversibly activated state was much slower. A combination of GDP[S] and glucagon could partially reverse the quasi-irreversible activation by p[NH]ppG. Glucagon decreased the lag time required for p[NH]ppG to activate adenylate cyclase and increased the extent of activation by p[NH]ppG. This stimulatory effect of the hormone on top of guanine nucleotide decreased on preincubation with p[NH]ppG, but not with GTP. Our results suggest that the activation of adenylate cyclase by non-hydrolysable GTP analogues is a two-stage process: the formation of a reversibly activated form (G rev) is a rapid process, followed by a much slower formation of the quasi-irreversibly activated form (G irr). Glucagon can stimulate G rev but not G irr, and can partially facilitate the formation of the G rev from the G irr state.  相似文献   

9.
One of the earliest actions of thrombin in fibroblasts is stimulation of a phospholipase C (PLC) that hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. In membranes prepared from WI-38 human lung fibroblasts, thrombin activated an inositol-lipid-specific PLC that hydrolysed [32P]PIP2 and [32P]phosphatidylinositol 4-monophosphate (PIP) to [32P]IP3 and [32P]inositol 1,4-bisphosphate (IP2) respectively. Degradation of [32P]phosphatidylinositol was not detected. PLC activation by thrombin was dependent on GTP, and was completely inhibited by a 15-fold excess of the non-hydrolysable GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP[S]). Neither ATP nor cytosol was required. Guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) also stimulated polyphosphoinositide hydrolysis, and this activation was inhibited by GDP[S]. Stimulation of PLC by either thrombin or p[NH]ppG was dependent on Ca2+. Activation by thrombin required Ca2+ concentrations between 1 and 100 nM, whereas stimulation of PLC activity by GTP required concentrations of Ca2+ above 100 nM. Thus the mitogen thrombin increased the sensitivity of PLC to concentrations of free Ca2+ similar to those found in quiescent fibroblasts. Under identical conditions, another mitogen, platelet-derived growth factor, did not stimulate polyphosphoinositide hydrolysis. It is concluded that an early post-receptor effect of thrombin is the activation of a Ca2+- and GTP-dependent membrane-associated PLC that specifically cleaves PIP2 and PIP. This result suggests that the cell-surface receptor for thrombin is coupled to a polyphosphoinositide-specific PLC by a GTP-binding protein that regulates PLC activity by increasing its sensitivity to Ca2+.  相似文献   

10.
[3H]Inositol-labelled GH3 rat anterior pituitary tumour cells were permeabilized with digitonin and were incubated at 37 degrees C in the presence of ATP and Mg2+. [3H]Polyphosphoinositide breakdown and [3H]inositol phosphate production were stimulated by hydrolysis-resistant GTP analogues and by Ca2+. Of the nucleotides tested, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) was the most effective stimulus. Activation by GTP gamma S appeared to be mediated by a guanine nucleotide-binding (G) protein as GTP gamma S-stimulated [3H]inositol phosphate production was inhibited by other nucleotides with a potency order of GTP = GDP = guanosine 5'-[beta-thio]diphosphate greater than ITP greater than GMP greater than UTP = CTP = adenosine 5'-[gamma-thio]triphosphate. The stimulatory effects of 10 microM-GTP gamma S on [3H]inositol phosphate levels were reversed by spermine and spermidine with IC50 values of approx. 0.25 and 2 mM respectively. Putrescine was inhibitory only at higher concentrations. Similarly, GTP gamma S-induced decreases in [3H]polyphosphoinositide levels were reversed by 2.5 mM-spermine. The inhibitory effects of spermine were not overcome by supramaximal concentrations of GTP gamma S. In contrast, [3H]inositol phosphate production stimulated by addition of 0.3-0.6 mM-Ca2+ to incubation media was only partially inhibited by spermine (5 mM), and spermine was not inhibitory when added Ca2+ was increased to 1 mM. These data show that polyamines, particularly spermine, inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis with a marked selectivity towards the stimulatory effects of GTP gamma S.  相似文献   

11.
Known nucleoside diphosphate kinases (NDPKs) are oligomers of 17-23-kDa subunits and catalyze the reaction N1TP + N2DP --> N1DP + N2TP via formation of a histidine-phosphorylated enzyme intermediate. NDPKs are involved in the activation of heterotrimeric GTP-binding proteins (G-proteins) by catalyzing the formation of GTP from GDP, but the properties of G-protein-associated NDPKs are still incompletely known. The aim of our present study was to characterize NDPK in soluble preparations of the retinal G-protein transducin. The NDPK is operationally referred to as transducin-NDPK. Like known NDPKs, transducin-NDPK utilizes NTPs and phosphorothioate analogs of NTPs as substrates. GDP was a more effective phosphoryl group acceptor at transducin-NDPK than ADP and CDP, and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) was a more effective thiophosphoryl group donor than adenosine 5'-[gamma-thio]triphosphate (ATP[S]). In contrast with their action on known NDPKs, mastoparan and mastoparan 7 had no stimulatory effect on transducin-NDPK. Guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) potentiated [3H]GTP[S] formation from [3H]GDP and ATP[S] but not [3H]GTP[S] formation from [3H]GDP and GTP[S]. Depending on the thiophosphoryl group acceptor and donor, [3H]NTP[S] formation was differentially regulated by Mg2+, Mn2+, Co2+, Ca2+ and Zn2+. [gamma-32P]ATP and [gamma-32P]GTP [32P]phosphorylated, and [35S]ATP[S] [35S]thiophosphorylated, a 36-kDa protein comigrating with transducin-beta. p[NH]ppG potentiated [35S]thiophosphorylation of the 36-kDa protein. 32P-labeling of the 36-kDa protein showed characteristics of histidine phosphorylation. There was no evidence for (thio)phosphorylation of 17-23-kDa proteins. Our data show the following: (a) soluble transducin preparations contain a GDP-prefering and guanine nucleotide-regulated NDPK; (b) transducin-beta may serve as a (thio)phosphorylated NDPK intermediate; (c) transducin-NDPK is distinct from known NDPKs and may consist of multiple kinases or a single kinase with multiple regulatory domains.  相似文献   

12.
The relationship between Ca2(+)-dependent arachidonic acid release and exocytosis from digitonin-permeabilized bovine adrenal chromaffin cells was investigated. The phospholipase A2 inhibitors mepacrine, nordihydroguaiaretic acid and indomethacin had no effect on either arachidonic acid release or secretion. The phospholipase A2 activator melittin had no effect on secretion. The specific diacylglycerol lipase inhibitor RG80267 had no effect on secretion, but decreased basal arachidonic acid release to such an extent that the level of arachidonic acid in treated cells in response to 10 microM-Ca2+ was equivalent to that of control cells in the absence of Ca2+. Staurosporine, a protein kinase C inhibitor, was found to abolish Ca2(+)-dependent arachidonic acid release completely, but had only a slight inhibitory effect on Ca2(+)-dependent secretion. It is concluded that arachidonic acid is not essential for Ca2(+)-dependent exocytosis in adrenal chromaffin cells.  相似文献   

13.
Inhibition of luteinizing hormone (LH) exocytosis by guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) in permeabilized pituitary cells has indicated the involvement of one or more GTP-binding proteins in the exocytotic mechanism distal to second messenger generation. We now report that two inhibitory sites of action of GTP gamma S can be distinguished by their dependence on GTP gamma S concentration and their sensitivity to pertussis toxin. Ca(2+)-stimulated exocytosis was half-maximally inhibited by 6.8 microM GTP gamma S, a six-fold higher concentration than that required for inhibition of exocytosis stimulated by phorbol ester plus cAMP. In addition, GTP gamma S inhibition of Ca(2+)-stimulated exocytosis was insensitive to pertussis toxin, in contrast to the inhibition of exocytosis stimulated by phorbol ester plus cAMP, which was abolished by pretreatment with pertussis toxin. These results indicate that at least two stimulus-specific GTP-binding proteins are involved in regulating LH exocytosis distal to second messenger generation.  相似文献   

14.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

15.
The addition of either Ca2+ or guanosine 5'-O-3-(thiotriphosphate), GTP gamma S, to digitonin-permeabilized rat pheochromocytoma PC12 cells stimulates norepinephrine release. Unlike Ca(2+)-stimulated release, there is a delay between the time of addition of GTP gamma S to digitonin-permeabilized PC12 cells and stimulation of norepinephrine release. Preincubation of the permeabilized cells in the absence of Mg2+ eliminates this lag and increases the initial rate of GTP-gamma S-stimulated norepinephrine secretion. This suggests that the rate of GDP dissociation from the GTP-binding protein responsible for this stimulation is faster in the absence of Mg2+ than in its presence. While an equimolar concentration of GTP gives 50% inhibition of GTP gamma S-stimulated release, 100-fold excesses of ITP, ATP, UTP and CTP gave no inhibition of GTP gamma S-stimulated release. Both the inability of ITP to inhibit GTP gamma S-stimulated secretion and the increase in GTP gamma S-stimulated secretion caused by preincubation in the absence of Mg2+ indicate that some of the properties of the GTP-binding protein responsible for this stimulation are more like those of the low molecular weight GTP-binding proteins rap1 and ras than those of a heterotrimeric G-protein. Low concentrations of N-ethylmaleimide gave more inhibition of GTP gamma S-stimulated release than Ca(2+)-stimulated release which suggests that the mechanisms by which Ca2+ and GTP gamma S stimulate norepinephrine release are at least in part distinct.  相似文献   

16.
The nonhydrolyzable GTP analogue guanosine 5'-(beta, gamma-imido)triphosphate (GMP-PNP) produced an ATP-dependent but Ca2+-independent stimulation of [3H]norepinephrine release from permeabilized chromaffin cells. This stimulation of secretion was 25-35% of the secretion induced by 10 microM Ca2+. A similar Ca2+-independent stimulation was produced by other non-hydrolyzable GTP analogues. No effect was seen with a variety of other nucleotides, including GTP. The GMP-PNP effect was specifically inhibited by low concentrations of guanine nucleotides. Addition of cAMP did not mimic the Ca2+-independent GMP-PNP effect, but did slightly enhance Ca2+-dependent secretion. Pretreatment with pertussis toxin had no effect on Ca2+-dependent secretion or on the GMP-PNP effect. There was no detectable diglyceride or inositol phosphate produced during GMP-PNP treatment, and addition of diglyceride and inositol trisphosphate did not induce secretion. Guanosine 5'-(beta-thio)diphosphate (GDP-beta-S), in addition to its ability to inhibit the GMP-PNP effect, partially inhibited Ca2+-dependent secretion. At 10 microM free Ca2+, the effects of GMP-PNP and Ca2+ were nonadditive. In fact, secretion in the presence of both GMP-PNP and 10 microM Ca2+ was slightly less than secretion due to Ca2+ alone. These data suggest that a guanine nucleotide-dependent process interacts in some way with one or more components of the normal Ca2+-dependent secretory pathway. However, it may not be an intrinsic part of the mechanism underlying Ca2+-dependent secretion.  相似文献   

17.
NADPH-oxidase-catalyzed superoxide (O2-) formation in membranes of HL-60 leukemic cells was activated by arachidonic acid in the presence of Mg2+ and HL-60 cytosol. The GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S] and guanosine 5'-[beta,gamma-imido]triphosphate, being potent activators of guanine-nucleotide-binding proteins (G proteins), stimulated O2- formation up to 3.5-fold. The adenine analogue of GTP[gamma S], adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), which can serve as donor of thiophosphoryl groups in kinase-mediated reactions, stimulated O2- formation up to 2.5-fold, whereas the non-phosphorylating adenosine 5'-[beta,gamma-imido]triphosphate was inactive. The effect of ATP[gamma S] was half-maximal at a concentration of 2 microM, was observed in the absence of added GDP and occurred with a lag period two times longer than the one with GTP[gamma S]. HL-60 membranes exhibited nucleoside-diphosphate kinase activity, catalyzing the thiophosphorylation of GDP to GTP[gamma S] by ATP[gamma S]. GTP[gamma S] formation was half-maximal at a concentration of 3-4 microM ATP[gamma S] and was suppressed by removal of GDP by creatine kinase/creatine phosphate (CK/CP). The stimulatory effect of ATP[gamma S] on O2- formation was abolished by the nucleoside-diphosphate kinase inhibitor UDP. Mg2+ chelation with EDTA and removal of endogenous GDP by CK/CP abolished NADPH oxidase activation by ATP[gamma S] and considerably diminished stimulation by GTP[gamma S]. GTP[gamma S] also served as a thiophosphoryl group donor to GDP, with an even higher efficiency than ATP[gamma S]. Transthiophosphorylation of GDP to GTP[gamma S] was only partially inhibited by CK/CP. Our results suggest that NADPH oxidase is regulated by a G protein, which may be activated either by exchange of bound GDP by guanosine triphosphate or by thiophosphoryl group transfer to endogenous GDP by nucleoside-diphosphate kinase.  相似文献   

18.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

19.
The exocytotic histamine secretion from ATP-permeabilized and Mg-resealed rat peritoneal mast cells is markedly enhanced by the addition of guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) at a concentration of 100 uM. GTP gamma S also caused a great enhancement of arachidonic acid liberation from these cells. The level of released arachidonic acid in permeabilized cells enhanced by GTP gamma S in the absence of Ca2+ was nearly equal to the level of permeabilized cells incubated in the presence of Ca2+ but without GTP gamma S, suggesting the Ca2+ sparing effect of GTP gamma S. From the time sequential changes in the [3H]arachidonate radioactivities in various phospholipids, it is conceivable that nucleotide-dependent arachidonic acid release was mediated via phospholipase A2 pathway. The entrapment of a diacylglycerol (DG) lipase inhibitor, RHC 80267, caused suppression of both Ca2+- and guanine nucleotide-dependent arachidonic acid liberation in mast cells, indicating contribution of DG lipase pathway for arachidonic acid generation.  相似文献   

20.
The existence of rapid light-induced changes of light scattering in suspensions of bovine rod outer segment membranes has been described previously [H. Kühn et al. (1981) Proc. Natl Acad. Sci. USA, 78, 6873-6877]. The signal observed in the presence of GTP has been interpreted as being related to the rhodopsin-catalyzed exchange of GTP for GDP bound to the GTP-binding protein, i.e. to the formation of the activator of the cGMP phosphodiesterase [B.K.K. Fung et al. (1981) Proc. Natl Acad. Sci. USA, 78, 152-156]. We have tested this interpretation in the present paper by investigating the relation between the light-scattering signal and the activity of the phosphodiesterase using rapid recording techniques for both processes. All the results obtained are consistent with the above hypothesis. The amplitude of the light-scattering signal and the activity of the phosphodiesterase are shown to present the same dependence upon the flash intensity and upon the concentration of GTP or its analog guanosine 5'-[beta, gamma--imido]triphosphate (p[NH]ppG). The results suggest that the GTP-binding protein possesses one high-affinity p[NH]ppG-binding site (Kd much less than 0.1 microM). At high concentrations of GTP or p[NH]ppG the phosphodiesterase is activated in the dark and the light-scattering signal is correspondingly reduced; both effects are prevented by previous incubation with guanosine 5'-[beta-thio]diphosphate (p[S]pG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号