首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant population geometry effective in light utilization for photosynthesis was examined with the use of square-planted (SP) population models and the Monte Carlo technique. Varying SP populations were constructed by manipulating the structural variables, leaf area density, leaf size, leaf number, height/width ratio of unit stand and planting distance, of the unit stand with standard configurations treated in the second paper. Leaf area index was fixed to be 5, and the phyllotaxis, 1/3. The effects of these structural variables on the light extinction in the SP populations were made clear with light-beam emission experiments in a computer. Special combinations of the variables could make light extinction in the infinite population approximately linear with increasing leaf area index to obtain the highest photosynthesis of the foliage, i.e., each leaf layer from top to bottom of the population could uniformly utilize light energy for photosynthetic production.  相似文献   

2.
BACKGROUND AND AIMS: Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). METHODS: Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). RESULTS: Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. CONCLUSION: Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.  相似文献   

3.
* Simple models of light interception are useful to identify the key structural parameters involved in light capture. We developed such models for isolated trees and tested them with virtual experiments. Light interception was decomposed into the projection of the crown envelope and the crown porosity. The latter was related to tree structure parameters. * Virtual experiments were conducted with three-dimensional (3-D) digitized apple trees grown in Lebanon and Switzerland, with different cultivars and training. The digitized trees allowed actual values of canopy structure (total leaf area, crown volume, foliage inclination angle, variance of leaf area density) and light interception properties (projected leaf area, silhouette to total area ratio, porosity, dispersion parameters) to be computed, and relationships between structure and interception variables to be derived. * The projected envelope area was related to crown volume with a power function of exponent 2/3. Crown porosity was a negative exponential function of mean optical density, that is, the ratio between total leaf area and the projected envelope area. The leaf dispersion parameter was a negative linear function of the relative variance of leaf area density in the crown volume. * The resulting models were expressed as two single equations. After calibration, model outputs were very close to values computed from the 3-D digitized databases.  相似文献   

4.
Summary The structural characteristics of a diverse array of Quercus coccifera canopies were assessed and related to measured and computed light attenuation, proportion of sunlit foliage, foliage temperatures, and photosynthesis and diffusive conductance behavior in different canopy layers. A canopy model incorporating all components of shortwave and longwave radiation, and the energy balance, conductance, and CO2 and H2O exchanges of all leaf layers was developed and compared with measurements of microclimate and gas exchange in canopies in four seasons of the year. In the denser canopies with a leaf area index (LAI) greater than 5, there is little sunlit foliage and the diffuse radiation (400–700 nm) is attenuated to 5% or less of the global radiation (400–700 nm) incident on the top of the canopy. Foliage of this species is nonrandomly distributed with respect to azimuth angle, and within each canopy layer, foliage azimuth and inclination angles are correlated. A detailed version of the model which computed radiation interception and photosynthetic light harvesting according to these nonrandom distributions indicated little difference in whole-canopy gas exchange from calculations of the normal model, which assumes random azimuth orientation. The contributions of different leaf layers to canopy gas exchange are not only a function of the canopy microclimate, but also the degree to which leaves in the lower layers of the canopy exhibit more shade-leaf characteristics, such as low photosynthetic and respiratory capacity and maximal conductance. On cloudless days, the majority of the foliage in a canopy of 5.4 LAI is shaded —70%–90% depending on the time of year. Yet, the shaded foliage under these conditions is calculated to contribute only about one-third of the canopy carbon gain. This contribution is about the same as that of the upper 13% of the canopy foliage. Computed annual whole-canopy carbon gain and water use are, respectively, 60% and 100% greater for a canopy of 5 LAI than for one of 2 LAI. Canopy water-use efficiency is correspondingly less for the canopy of 5 LAI than for that of 2 LAI, but most of this difference is apparent during the cool months of the year, when moisture is more abundant.  相似文献   

5.
Plant Production in Relation to Foliage Illumination   总被引:5,自引:1,他引:4  
The intensity of light received by plants can be specified interms of its extinction with depth in the foliage. Various light-extinctionfunctions are introduced to specify the light received by plantswith different patterns of foliage development (viz. standardexponential, best exponential, and ideal). The implicationsof these extinction functions are discussed and the productionassociated with each foliage type is studied as a function ofleaf area index, LAI (the ratio of leaf area to ground area).The concepts of optimum LAI and ceiling LAI are considered inrelation to these foliages. It is shown that, contrary to whathas previously been thought, a foliage in which the bottom leavesare at compensation point is not necessarily at optimum LAI.It also becomes possible to reconcile conflicting views on therelationship between optimum LAI and ceiling LAI.  相似文献   

6.
Yerba‐mate is a subtropical, evergreen, dioecious, South American tree. Sexual dimorphism in photosynthesis, leaf allometry and foliage distribution was hypothesised. Virtual trees (constructed in VPlants software from detailed measurements of plant morphogenesis) of the two genders were compared considering two contrasted cultivation environments and three developmental stages. The total crown volume, leaf area per plant (LA), leaf area index (LAI) and leaf area density (LAD) were calculated. The light interception and photosynthesis were computed from mock‐ups in VegeSTAR. Structural sexual dimorphism concerned general plant form, internode length, leaf allometry, leaf surface, pattern of leaf area distribution and LAD. Cultivation environment and developmental stage acted strongly on sex expression of all observed structural parameters and physiological stages. Sexual differentiation in LA and light interception was related to leaves positioned in the lowest layers (150 cm above ground), whereas sexual specialisation in leaf and plant photosynthesis was related to early vegetative and reproductive stages. Several sexual responses strongly depended on the environment, especially light conditions, with opposite effects observed on female and male plants whether they were cultivated in monoculture or in forest understorey, under high‐light condition or low‐light condition, respectively. Optimised foliage structure and physiology in females may compensate for greater reproductive costs in early developmental stages, but females and males equalise in photosynthetic efficiency after 2‐year regrowth.  相似文献   

7.
本研究基于5年的耕作定位试验,设置深耕(DT)、深耕有机肥(DTF)、浅耕(ST)、浅耕有机肥(STF)、免耕(NT)和免耕有机肥(NTF)处理,以期通过改良耕层土壤结构,优化小麦冠层结构特性.结果表明: 同一耕作处理下,增施有机肥可降低土壤容重、提高土壤孔隙度,提高20~40 cm土层2~5和0.25~2 mm粒级土壤团聚体含量,降低>5 mm粒级团聚体含量、>0.25 mm粒级团聚体的平均质量直径(MWD)和几何平均直径(GMD).与其他处理相比,NTF处理改善了0~20 cm土层土壤容重、增加土壤孔隙度;DTF处理降低了40~60 cm土壤容重和>0.25 mm粒级机械团聚体的稳定性,增加了土壤透气性.花后各时期,有机肥处理的叶片角度指数降低,叶面积指数(LAI)和旗叶净光合速率(Pn)提高.STF处理的角度指数最低,DTF处理的Pn最高,显著大于其他处理.通径分析表明,自变量容重、孔隙度、>0.25 mm粒级团聚体的数量(R0.25)和MWD对因变量角度指数、LAI和Pn的直接通径系数均达到极显著水平.0~20 cm土层,MWD值增大有利于Pn和LAI的提高;20~40 cm土层,土壤容重在一定范围内的增加可优化叶夹角,提高冠层透光率;40~60 cm土层,高的土壤容重和低的孔隙度限制了LAI和Pn的增加.综上,豫中补灌区增施有机肥下的深耕或浅耕处理有利于改良土壤结构、增加土壤通透性,优化冠层结构,提高冠层受光率、叶面积指数和光合速率.  相似文献   

8.
Changes in the efficiency of light interception and in the costs for light harvesting along the light gradients from the top of the plant canopy to the bottom are the major means by which efficient light harvesting is achieved in ecosystems. In the current review analysis, leaf, shoot and canopy level determinants of plant light harvesting, the light-driven plasticity in key traits altering light harvesting, and variations among different plant functional types and between species of different shade tolerance are analyzed. In addition, plant age- and size-dependent alterations in light harvesting efficiency are also examined. At the leaf level, the variations in light harvesting are driven by alterations in leaf chlorophyll content modifies the fraction of incident light harvested by given leaf area, and in leaf dry mass per unit area (M A) that determines the amount of leaf area formed with certain fraction of plant biomass in the leaves. In needle-leaved species with complex foliage cross-section, the degree of foliage surface exposure also depends on the leaf total-to-projected surface area ratio. At the shoot scale, foliage inclination angle distribution and foliage spatial aggregation are the major determinants of light harvesting, while at the canopy scale, branching frequency, foliage distribution and biomass allocation to leaves (F L) modify light harvesting significantly. F L decreases with increasing plant size from herbs to shrubs to trees due to progressively larger support costs in plant functional types with greater stature. Among trees, F L and stand leaf area index scale positively with foliage longevity. Plant traits altering light harvesting have a large potential to adjust to light availability. Chlorophyll per mass increases, while M A, foliage inclination from the horizontal and degree of spatial aggregation decrease with decreasing light availability. In addition, branching frequency decreases and canopies become flatter in lower light. All these plastic modifications greatly enhance light harvesting in low light. Species with greater shade tolerance typically form a more extensive canopy by having lower M A in deciduous species and enhanced leaf longevity in evergreens. In addition, young plants of shade tolerators commonly have less strongly aggregated foliage and flatter canopies, while in adult plants partly exposed to high light, higher shade tolerance of foliage allows the shade tolerators to maintain more leaf layers, resulting in extended crowns. Within a given plant functional type, increases in plant age and size result in increases in M A, reductions in F L and increases in foliage aggregation, thereby reducing plant leaf area index and the efficiency of light harvesting. Such dynamic modifications in plant light harvesting play a key role in stand development and productivity. Overall, the current review analysis demonstrates that a suite of chemical and architectural traits at various scales and their plasticity drive plant light harvesting efficiency. Enhanced light harvesting can be achieved by various combinations of traits, and these suites of traits vary during plant ontogeny.  相似文献   

9.
It is unclear whether the shift in leaf traits between species of high- and low-rainfall sites is caused by low rainfall or by species replacement, because leaf traits vary substantially among species and sites. Our objective was to test if the within-species relationship between specific leaf area (SLA) and leaf N concentration (N(mass) ) shifts across a rainfall gradient in the semi-arid sandy lands of northern China. Data for SLA and N(mass) of dominant species and related canopy and soil variables were collected from 33 plots along a rainfall transect (270-390 mm) having similar temperatures in the Mu Us, Inner Mongolia. We further investigated the generality of Mu Us data using 12 additional plots in the southeastern Qaidam Basin, Qinghai. Artemisia ordosica is a widespread species in both regions. Across and within species, the positive SLA-N(mass) relationship shifted between two plant groups in the lowest rainfall plots (270 mm) and other higher rainfall plots (320-390 mm), which was confirmed by additional data from Qinghai. For A. ordosica populations, leaf area index (LAI) decreased and N(mass) increased with decreasing rainfall, while the foliage N pool and SLA varied little. Rainfall was the limiting factor that determined variations in N(mass) and LAI. Accordingly, N(mass) /SLA ratios continually increased with decreasing LAI along the rainfall gradient (r = -0.76, P < 0.001). Results indicate a low rainfall-induced shift in the SLA-N(mass) relationship associated with changes in LAI and foliage N pool, suggesting a link between leaf characteristics and ecosystem function.  相似文献   

10.
Evolutionarily stable leaf area production in plant populations   总被引:4,自引:0,他引:4  
Using an analytical model, it was shown that for a given amount of nitrogen in the canopy of a stand (N(T)), there exists an evolutionarily stable leaf area index (ES-LAI), and therefore an evolutionarily stable average leaf nitrogen content (n(ES)(av);n(ES)(av) =N(T)/ES-LAI), at which no individual plant in the stand can increase its photosynthesis by changing its leaf area. It was also shown that this ES-LAI is always greater than the optimal LAI that maximizes photosynthesis per unit N(T) of the stand. This illustrates that the canopy structure that maximizes photosynthesis of a population is not the same as the canopy structure that maximizes photosynthesis of individuals within a population. It was further derived that the ES-LAI at given N(T) increases with the ratio between the light-saturated photosynthesis and the N content per unit leaf area (leaf-PPNUE) and that it decreases with the canopy extinction coefficient for light (K(L)), the light availability and the apparent quantum yield (phi). These hypotheses were tested by comparing calculated ES-LAI and n(ES)(av) values to actual LAIs and leaf N contents measured for stands of a large variety of herbaceous plants. There was a close correspondence between the calculated and measured values. As predicted by the model, plants with high leaf-PPNUEs produced more leaf area per unit nitrogen than those with low leaf-PPNUEs while plants with horizontal leaves, forming stands with higher K(L) values, produced less leaf area than those with more vertically inclined leaves. These results suggest that maximization of individual plant photosynthesis per unit of nitrogen plays an important role in determining leaf area production of plants and the resulting canopy structure of stands of vegetation. They further suggest this optimization to be a mechanism by which leaf traits such as leaf-PPNUE and leaf inclination angle are causally related to structural characteristics of the population, i.e. the leaf area index of the stand.  相似文献   

11.
Basal leaves frequently senesce before anthesis in high population density crops. This paper evaluates the hypothesis that quantitative and qualitative changes in the light environment associated with a high leaf area index (LAI) trigger leaf senescence in sunflower ( Helianthus annuus L.) canopies. Mean leaf duration (LD, time from achievement of maximum leaf area) of leaf 8 was significantly ( P < 0.05) reduced from 51 to 19 days as crop population density was increased from 0.47 to 4.76 plants m−2. High compared to low plant population density was associated with earlier reduction in the photosynthetically active radiation (PAR) and red/far-red ratio (R/FR) reaching the target leaf. However the changes in R/FR preceded those in PAR. When the light environment of individual leaves of isolated plants growing under field conditions was manipulated using filters and FR-reflecting mirrors, LD was positively and linearly related with the mean daily PAR (MDR) received in the FR- (no FR enrichment) treatments. FR enrichment of light reaching the abaxial surface of the leaf significantly ( P < 0.05) reduced LD by 9 days at intermediate PAR levels with respect to FR-controls, but did not affect LD at the maximum PAR used in these experiments. However, when light reaching both leaf surfaces was enriched with FR, LD (for leaves receiving maximum PAR) was 13 days shorter than that of the FR- control. These results show that basal leaf senescence in sunflower is enhanced both by a decrease in PAR and by a decrease in R/FR.  相似文献   

12.
Summary A multispecies canopy photosynthesis simulation model was used to examine the importance of canopy structure in influencing light interception and carbon gain in mixed and pure stands of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.), a common weedy competitor of wheat. In the mixtures, the fraction of the simulated canopy photosynthesis contributed by wheat was found to decline during the growing season and this decline was closely related to reductions in the amount of leaf area in upper canopy layers. For both species in mixture and in monoculture, simulated photosynthesis was greatest in the middle or upper-middle canopy layers and sensitivity analyses revealed that canopy photosynthesis was most sensitive to changes in leaf area and leaf inclination in these layers. Changes in LAI and leaf inclination affected canopy carbon gain differently for mixtures and monocultures, but the responses were not the same for the two species. Results from simulations where the structural characteristics of the two species were substituted indicated that species differences in leaf inclination, sheath area and the fraction of leaf area alive were of minor consequence compared with the differences in total leaf area in influencing relative canopy carbon gain in mixtures. Competition for light in these species mixtures appears to be influenced most by differences in the positioning of leaf area in upper canopy layers which determines, to a great extent, the amount of light intercepted.  相似文献   

13.
Tree fall gaps are widely considered to play a prominent role in the maintenance of species diversity, while the spatiotemporal variability of canopy structure within closed forest stands is largely ignored. In this study we examined the vertical and horizontal components of canopy structure and its seasonal variability in a tropical wet semideciduous rainforest in Panama. Leaf area indices (LAI) were derived from measurements of diffuse radiation and empirically-based leaf angle distribution by mathematical inversion of a light interception model. Vertical distribution of LAI was non-homogeneous with 50% of the leaf area being concentrated in the uppermost 5 m of the canopy. In the wet season, when foliage is most abundant, the horizontal distribution of LAI in a 2100 m2 plot ranged widely from 3 to 8, with a mean of 5.41. Changes in mean LAI between wet and dry seasons were small but highly significant. While ca 40% of the area was not affected by local changes in LAI, sizeable small scale changes in LAI did occur between wet and dry season in some locations. Local changes in LAI ranged from –2.3 to 2.4. These changes resulted in a 50% or more increase in light reaching the forest floor at 29% of the measuring locations, and a doubling or more at 13% of the location. Our results imply that structural heterogeneity by simple tree fall gaps do not adequately describe the dynamics of forest canopies.  相似文献   

14.
In order to characterize the canopy structure of different grassland types 50 stands, representing 15 syntaxonomically distinct types, were examined by harvesting the standing crop during the main flowering period. The types differ in water and nutrient conditions and vary largely in aboveground phytomass (0.5–23 t·ha?1) and Leaf Area Index (0.4–21: bifacial). Living aboveground phytomass and canopy structure are almost entirely determined by phanerogams. The graminoids generally dominate over the forbs. Variation in aboveground phytomass is related to foliage characteristics such as Aboveground Leaf Area Ratio, Specific Foliage Weight and Leaf Area Development. A PCA with these canopy variables and the variables canopy height, phytomass density and the phytomass ratios stem-leaf-inflorescence shows a clear arrangement related to aboveground phytomass and LAI. The grassland stands can be divided into four groups of different productivity levels for which various combinations of canopy variables are characteristic. Leaf size and leaf inclination are also used for characterization of the different grasslands. Ordinations with these variables by means of PCA and CCA resemble partly to those computed with the canopy variables of aboveground phytomass and LAI. Small leaf sizes are characteristic for low productive grasslands, while the largest leaves occur in high productive grasslands, although they mostly do not belong to the species contributing most strongly to the phytomass of the stand. The leaf inclinations erect and erecto-patent are most common in each grassland. Horizontal leaf areas occur less frequent, but they are relatively well presented in some high productive grasslands. Ranges in leaf size vary more than ranges in leaf inclination do for this series of grasslands. However, leaf size and leaf inclination are useful variables for characterization of grassland canopies in a hierarchical way, where phytomass and leaf area are the first criteria for such a characterization.  相似文献   

15.
Leaf area index (LAI) was developed to describe the number of layers of foliage in a monoculture. Subsequent expansion into measurement by remote‐sensing methods has resulted in misrepresentation of LAI. The new name foliage layer index (FLI) is applied to a more simply estimated version of Goodall's “cover repetition,” that is, the number of layers of foliage a single species has, either within a community or in monoculture. The relationship of FLI with cover is demonstrated in model communities, and some potential relationships between FLI and species’ habit are suggested. FLIcomm is a new formulation for the number of layers of foliage in a mixed‐species’ community. LAI should now be reserved for remote‐sensing applications in mixed communities, where it is probably a nonlinear measure of the density of light‐absorbing pigments.  相似文献   

16.
Factors that contribute to the accuracy of estimating woody canopy's leaf area density (LAD) using 3D portable lidar imaging were investigated. The 3D point cloud data for a Japanese zelkova canopy [Zelkova serrata (Thunberg) Makino] were collected using a portable scanning lidar from several points established on the ground and at 10 m above the ground. The LAD profiles were computed using voxel-based canopy profiling (VCP). The best LAD results [a root-mean-square error (RMSE) of 0.21 m(2) m(-3)] for the measurement plot (corresponding to an absolute LAI error of 9.5%) were obtained by compositing the ground-level and 10 m measurements. The factors that most strongly affected estimation accuracy included the presence of non-photosynthetic tissues, distribution of leaf inclination angles, number (N) of incident laser beams in each region within the canopy, and G(theta(m)) (the mean projection of a unit leaf area on a plane perpendicular to the direction of the laser beam at the measurement zenith angle of theta(m)). The influences of non-photosynthetic tissues and leaf inclination angle on the estimates amounted to 4.2-32.7% and 7.2-94.2%, respectively. The RMSE of the LAD estimations was expressed using a function of N and G(theta(m)).  相似文献   

17.
From an analytical model it was shown that for a given total amount of nitrogen in the canopy, there exists an optimal leaf area index (LAI), and therefore an optimal average leaf introgen content, at which canopy photosynthesis is maximal. If the LAI is increased above this optimum, increased light interception will not compensate for reduction in photosynthetic capacity of the canopy resulting from reduced leaf nitrogen contents. It was further derived from the model that the value of the optimal LAI increases with the photosynthetic nitrogen use efficiency (PNUE) and decreases with the canopy extinction coefficient for light (KL) and incident photon flux density (PFD) at the top of the canopy. These hypotheses were tested on dense stands of species with different photosynthetic modes and different architectures. A garden experiment was carried out with the C4 monocot sorghum ( Sorghum bicolor [L.] Moensch cv. Pioneer), the C3 monocot rice ( Oryza sativa L. cv. Araure 4), the C4 dicot amaranth ( Amaranthus cruentus L. cv. K113) and the C3 dicot soybean ( Glycine max [L.] Merr. cv. Williams) at two levels of nitrogen availability.
The C4 species had higher PNUEs than the C3 species while the dicots formed stands with higher extinction coefficients for light and had lower PNUEs than the monocots. The C4 and monocot species were found to have formed more leaf area per unit leaf nitrogen (i.e., had lower leaf nitrogen contents) than the C3 and dicot species, respectively. These results indicate that the PNUE and the extinction coefficient for light are important factors determining the amount of leaf area produced per unit nitrogen as was predicted by the model.  相似文献   

18.
We compared direct and indirect estimates of leaf area index (LAI) for lodgepole and loblolly pine stands. Indirect estimates of LAI using radiative methods of the LI-COR LAI-2000 Plant Canopy Analyzer (PCA) did not correlate with allometric estimates for lodgepole pine, and correlated only weakly with litter-trap estimates for loblolly pine. The PCA consistently under-estimated LAI in lodgepole pine stands with high LAI, and over-estimated LAI in the loblolly pine stands with low LAI. We developed a physical model to test the hypothesis that the PCA may under-estimate LAI in high leaf area stands because of increased foliage overlap and, therefore, increased selfshading. Radiative estimates of LAI using the PCA for the physical model were consistenly lower than allometric measures. Results from the physical model suggested that increased foliage overlap decreased the ability of the PCA to accurately estimate LAI. The relationship between allometric and radiative measures suggested an upper asymptote in LAI estimated using the PCA. The PCA may not accurately estimate LAI in stands of low or high leaf area index, and the bias or error associated with these estimates probably depends on species and canopy structure. A species specific correction factor will not necessarily correct bias in LAI estimates using the PCA.  相似文献   

19.
Morphological and stomatal responses of Norway spruce (Picea abies) foliage to light availability were studied in respect to shoot age. Needle minor diameter (D(1), anatomical width), major diameter (D(2), anatomical thickness), dry weight (M), and tissue density index (I(D)) increased, and needle flatness (Fl) and specific leaf area (SLA) decreased with foliage age, while shade foliage demonstrated higher morphological plasticity as compared to sun foliage. Needle minor diameter, dry weight, and the ratio of total to projected leaf area increased, and needle flatness and specific leaf area decreased with daily average photosynthetic photon flux density (Q(D)). The current-year foliage exhibited the highest variation with irradiance, while the morphological plasticity decreased with needle ageing. The morphological characteristics of needles were independent of irradiance if Q(D) was above 300 μmol m(-2) s(-1). D(1) was the only linear needle characteristic which significantly changed with light availability within a canopy, and thus determined needle flatness, SLA, as well as the ratio of total to projected leaf area (TLA/PLA). Needle flatness was a characteristic responding most sensitively to the photosynthetic photon flux density, R(2) was 0.68, 0.44, and 0.49 for the current-year, 1-year-old, and 2-year-old foliage, respectively. TLA/PLA ranged from 2.2 to 4.0 depending on D(1). Variation in SLA in response to light availability can be attributed to changes both in needle shape and tissue density. Stomatal responses to photosynthetic photon flux density (Q(P)) depended on foliage type (sun or shade) and age. Sun needles demonstrated higher daily maximum leaf conductances to water vapour compared to shade needles. The shade needles responded more sensitively to changes in Q(P) at dawn and sunset than the sun needles, while older needles of both foliage types exhibited faster stomatal responses. The light-saturation of leaf conductance (g(L)) was achieved by 20 μmol m(-2) s(-1) for shade foliage, and approximately by 50 μmol m(-2) s(-1) for sun foliage. As a rule, g(L) changed in response to irradiance faster in the evening, i.e. at decreasing irradiance. Stomata were not usually completely closed in the dark before sunrise and after sunset, the phenomenon being more pronounced in older shoots and sun needles. Nightly water losses from spruce foliage are attributable primarily to older shoots, and are related to age-dependent changes in stomatal responsiveness.  相似文献   

20.
Modelling is used to predict long‐term forest responses to increased atmospheric CO2 concentrations. Although productivity models are based on light intercepted by the canopy, very little experimental data are available for closed forest stands. Nevertheless, the relationships between light inside a canopy, leaf area, canopy structure, and individual leaf characteristics may be affected by elevated CO2, affecting in turn carbon gain. Using a free‐air CO2 enrichment (FACE) design in a high‐density plantation of Populus spp., we studied the effects of increased CO2 concentrations on transmittance (τ) of photosynthetic photon flux density (Qp), on ratios of red/far‐red light (R/FR), on leaf area index (LAI), on leaf inclination, on leaf chlorophyll (chl) and nitrogen (N) concentrations, and on specific leaf area (SLA) in the 2nd and 3rd years of treatment. Continuous measurements of τ were made in addition to canopy height profiles of light and leaf characteristics. Two years of Qp measurements showed an average decrease of canopy transmittance in the FACE treatment, with very small differences at canopy closure. Results were explained by an unaffected LAI in closed canopies, without a FACE‐induced stimulation of relative crown depth. In agreement, leaf inclination and extinction coefficients for light were similar in control and FACE conditions. Ratios of R/FR were not significantly affected by the FACE treatment, neither were leaf characteristics, with the exception of leaf N, which allows speculation about N limitation. In general, treatment differences in canopy profiles resulted from an initial stimulation of height growth in the FACE treatment. P. × euramericana differed from P. alba and P. nigra, but species did not differ significantly in their response to the FACE treatment. By the time fast‐growing high‐density forest plantations have passed the exponential growth phase and reached canopy closure, the likely effects of elevated atmospheric CO2 concentration on canopy architecture and absorption of Qp are minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号