首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds.  相似文献   

2.
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria which are most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

3.
Petroleum (or crude oil) is a complex mixture of hydrocarbons. Annually, millions of tons of crude petroleum oil enter the marine environment from either natural or anthropogenic sources. Hydrocarbon-degrading bacteria (HDB) are able to assimilate and metabolize hydrocarbons present in petroleum. Crude oil pollution constitutes a temporary condition of carbon excess coupled to a limited availability of nitrogen that prompts marine oil-degrading bacteria to accumulate storage compounds. Storage lipid compounds such as polyhydroxyalkanoates (PHAs), triacylglycerols (TAGs), or wax esters (WEs) constitute the main accumulated lipophilic substances by bacteria under such unbalanced growth conditions. The importance of these compounds as end-products or precursors to produce interesting biotechnologically relevant chemicals has already been recognized. In this review, we analyze the occurrence and accumulation of lipid storage in marine hydrocarbonoclastic bacteria. We further discuss briefly the production and export of lipophilic compounds by bacteria belonging to the Alcanivorax genus, which became a model strain of an unusual group of obligate hydrocarbonoclastic bacteria (OHCB) and discuss the possibility to produce neutral lipids using A. borkumensis SK2.  相似文献   

4.
Microbial Life at 90 C: the Sulfur Bacteria of Boulder Spring   总被引:14,自引:5,他引:9       下载免费PDF全文
The physiology of the bacteria living in Boulder Spring (Yellowstone National Park) at 90 to 93 C was studied with radioactive isotope techniques under conditions approximating natural ones. Cover slips were immersed in the spring; after a fairly even, dense coating of bacteria had developed, these cover slips were incubated with radioactive isotopes under various conditions and then counted in a gas flow or liquid scintillation counter. Uptake of labeled compounds was virtually completely inhibited by formaldehyde, hydrochloric acid, and mercuric bichloride, and inhibition was also found with streptomycin and sodium azide. The water of Boulder Spring contains about 3 mug of sulfide per ml. Uptake of labeled compounds occurs only if sulfide or another reduced sulfur compound is present during incubation. The pH optimum for uptake of radioactive compounds by Boulder Spring bacteria is 9.2, a value near that of the natural spring water (8.9). Many experiments with a variety of compounds were performed to determine the temperature optimum for uptake of labeled compounds. The results with all the compounds were generally similar, with broad temperature optima between 80 and 90 C, and with significant uptake in boiling (93 C) but not in superheated water (97 C). The results show that the bacteria of Boulder Spring are able to function at the temperature of their environment, although they function better at temperatures somewhat lower. The fine structure of these bacteria has been studied by allowing bacteria in the spring to colonize glass slides or Mylar strips which were immediately fixed, and the bacteria were then embedded and sectioned. The cell envelope structure of these bacteria is quite different from that of other mesophilic or thermophilic bacteria. There is a very distinct plasma membrane, but no morphologically distinct peptidoglycan layer was seen outside of the plasma membrane. Instead, a rather thick diffuse layer was seen, within which a subunit structure was often distinctly visible, and connections frequently occurred between this outer layer and the plasma membrane. The thick outer layer usually consisted of two parts, the outer part of which was sometimes missing. Within the cells, structures resembling ribosomes were seen, and regions lacking electron density which probably contained deoxyribonucleic acid were also visible.  相似文献   

5.
Mangrove sediment had high natural attenuation potential with more than 50% of total PAHs being removed within 15 days. The efficiency in degrading PAHs varied with the declining order of phenanthrene (Phe), fluoranthene (Fla), and pyrene (Pyr). The Most Probable Number (MPN) of PAH-degrading bacteria in the PAH-contaminated slurries was 2 to 4 orders of magnitude higher than that in the non-contaminated mangrove slurries. The biodegradation ability of the indigenous microbial community in mangrove sediment slurry was significantly increased after exposure to polycyclic aromatic hydrocarbons. Such enhancement effect was dependent on the level and time of exposure, as well as the types of PAH compounds. The lowest contamination level of 3 mg kg?1 was effective in promoting the degradation of Phe and Fla after seven days, but the enhancement effect for Pyr degradation was only found in the slurries exposed to contamination levels of 9 mg kg?1 for 30 days, suggesting a threshold concentration of PAHs to stimulate growth and activity of pyrene-degrading bacteria. The contamination level higher than the threshold concentration did not lead to more degradation. The present study provides insights into the natural attenuation of PAH-contaminated mangrove sediments.  相似文献   

6.
Sorokin DIu 《Mikrobiologiia》2003,72(6):725-739
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some of denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

7.
Our objectives were to identify substances produced by plant roots that might act as nutritional mediators of specific plant-bacterium relationships and to delineate the bacterial genes responsible for catabolizing these substances. We discovered new compounds, which we call calystegins, that have the characteristics of nutritional mediators. They were detected in only 3 of 105 species of higher plants examined: Calystegia sepium, Convolvulus arvensis (both of the Convolvulaceae family), and Atropa belladonna. Calystegins are abundant in organs in contact with the rhizosphere and are not found, or are observed only in small quantities, in aerial plant parts. Just as the synthesis of calystegins is infrequent in the plant kingdom, their catabolism is rare among rhizosphere bacteria that associate with plants and influence their growth. Of 42 such bacteria tested, only one (Rhizobium meliloti 41) was able to catabolize calystegins and use them as a sole source of carbon and nitrogen. The calystegin catabolism gene(s) (cac) in this strain is located on a self-transmissible plasmid (pRme41a), which is not essential to nitrogen-fixing symbiosis with legumes. We suggest that under natural conditions calystegins provide an exclusive carbon and nitrogen source to rhizosphere bacteria which are able to catabolize these compounds. Calystegins (and the corresponding microbial catabolic genes) might be used to analyze and possibly modify rhizosphere ecology.  相似文献   

8.
Polyketides comprise one of the major families of natural products. They are found in a wide variety of bacteria, fungi, and plants and include a large number of medically important compounds. Polyketides are biosynthesized by polyketide synthases (PKSs). One of the major groups of polyketides are the macrolides, the activities of which are derived from the presence of a macrolactone ring to which one or more 6-deoxysugars are attached. The core macrocyclic ring is biosynthesized from acyl-CoA precursors by PKS. Genetic manipulation of PKS-encoding genes can result in predictable changes in the structure of the macrolactone component, many of which are not easily achieved through standard chemical derivatization or total synthesis. Furthermore, many of the changes, including post-PKS modifications such as glycosylation and oxidation, can be combined for further structural diversification. This review highlights the current state of novel macrolide production with a focus on the genetic engineering of PKS and post-PKS tailoring genes. Such engineering of the metabolic pathways for macrolide biosynthesis provides attractive alternatives for the production of diverse non-natural compounds. Other issues of importance, including the engineering of precursor pathways and heterologous expression of macrolide biosynthetic genes, are also considered.  相似文献   

9.
Bacteriocins are compounds that are produced by bacteria and are antagonistic to other bacteria. Although they have been known for many years, recent interest in these compounds has increased because of their potential use as natural food preservatives. Although most of this research has been directed at the molecular level, a clearer picture of the ecological role played by bacteriocins in natural environments is beginning to emerge. In addition, the importance and practical implications of evolutionary aspects of bacteriocins and bacteriocin resistance are now being assessed.  相似文献   

10.
Phyllosphere bacteria on ornamental plants were characterized based on their diversity and activity towards the removal of polycyclic aromatic hydrocarbons (PAHs), the major air pollutants in urban area. The amounts of PAH-degrading bacteria were about 1–10% of the total heterotrophic phyllosphere populations and consisted of diverse bacterial species such as Acinetobacter, Pseudomonas, Pseudoxanthomonas, Mycobacterium, and uncultured bacteria. Bacterial community structures analyzed by polymerase chain reaction–denaturing gradient gel electrophoresis from each plant species showed distinct band patterns. The uniqueness of these phyllosphere bacterial communities was partly due to the variation in leaf morphology and chemical properties of ornamental plants. The PAH degradation activity of these bacteria was monitored in gas-tight systems containing sterilized or unsterilized leaves. The results indicated that phyllosphere bacteria on unsterilized leaves were able to enhance the activity of leaves for phenanthrene removal. When compared between plant species, phenanthrene removal efficiency corresponded to the size of phenanthrene-degrading bacteria. In addition, phyllosphere bacteria on Wrightia religiosa were able to reduce other PAHs such as acenaphthylene, acenaphthene, and fluorine in 60-ml glass vials and in a 14-l glass chamber. Thus, phyllosphere bacteria on ornamental plants may play an important role in natural attenuation of airborne PAHs in urban areas.  相似文献   

11.
1.?Basal levels of metabolism vary significantly among individuals in many taxa, but the effects of this on fitness are generally unknown. Resting metabolic rate (RMR) in juvenile salmon and trout is positively related to dominance status and ability to obtain a feeding territory, but it is not clear how this translates into performance in natural conditions. 2.?The relationships between RMR, dominance, territoriality and growth rates of yearling Atlantic salmon Salmo salar were examined in relation to predictability in food supply and habitat complexity, using replicate sections of a large-scale controlled semi-natural stream. 3.?Estimated RMR was a strong predictor of dominance, and under conditions of a predictable food supply in a structurally simple habitat, high estimated RMR fish obtained the best feeding territories and grew faster. 4.?When the spatial distribution of food was made less predictable, dominant (high estimated RMR) fish were still able to occupy the most profitable feeding locations by periodically moving location to track the changes in food availability, but RMR was no longer a predictor of growth rate. Moreover, when a less predictable food supply was combined with a visually more complex (and realistic) habitat, fish were unable to track changes in food availability, grew more slowly and exhibited greater site fidelity, and there were no relationships between estimated RMR and quality of occupied territory or growth rate. 5.?The relative benefit of RMR is thus context dependent, depending on both habitat complexity and the predictability of the food supply. Higher habitat complexity and lower food predictability decrease the performance advantages associated with a high RMR.  相似文献   

12.
Soil represents a very heterogeneous environment for its microbiota. Among the soil inhabitants, bacteria and fungi are important organisms as they are involved in key biogeochemical cycling processes. A main energy source driving the system is formed by plants through the provision of plant-fixed (reduced) carbon to the soil, whereas soil nitrogen and phosphorus may move from the soil back to the plant. The carbonaceous compounds released form the key energy and nutrient sources for the soil microbiota. In the grossly carbon-limited soil, the emergence of plant roots and the formation of their associated mycorrhizae thus create nutritional hot spots for soil-dwelling bacteria. As there is natural (fitness) selection on bacteria in the soil, those bacteria that are best able to benefit from the hot spots have probably been selected. The purpose of this review is to examine the interactions of bacteria with soil fungi in these hot spots and to highlight the key mechanisms involved in the selection of fungal-responsive bacteria. Salient bacterial mechanisms that are involved in these interactions have emerged from this examination. Thus, the efficient acquisition for specific released nutrients, the presence of type-III secretion systems and the capacity of flagellar movement and to form a biofilm are pinpointed as key aspects of bacterial life in the mycosphere. The possible involvement of functions present on plasmid-borne genes is also interrogated.  相似文献   

13.
Drugs from the seas - current status and microbiological implications   总被引:28,自引:0,他引:28  
The oceans are the source of a large group of structurally unique natural products that are mainly accumulated in invertebrates such as sponges, tunicates, bryozoans, and molluscs. Several of these compounds (especially the tunicate metabolite ET-743) show pronounced pharmacological activities and are interesting candidates for new drugs primarily in the area of cancer treatment. Other compounds are currently being developed as an analgesic (ziconotide from the mollusc Conus magus) or to treat inflammation. Numerous natural products from marine invertebrates show striking structural similarities to known metabolites of microbial origin, suggesting that microorganisms (bacteria, microalgae) are at least involved in their biosynthesis or are in fact the true sources of these respective metabolites. This assumption is corroborated by several studies on natural products from sponges that proved these compounds to be localized in symbiotic bacteria or cyanobacteria. Recently, molecular methods have successfully been applied to study the microbial diversity in marine sponges and to gain evidence for an involvement of bacteria in the biosynthesis of the bryostatins in the bryozoan Bugula neritina.  相似文献   

14.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

15.
Coffee and caffeine are mutagenic to bacteria and fungi, and in high concentrations they are also mutagenic to mammalian cells in culture. However, the mutagenic effects of coffee disappear when bacteria or mammalian cells are cultured in the presence of liver extracts which contain detoxifying enzymes. In vivo, coffee and caffeine are devoid of mutagenic effects. Coffee and caffeine are able to interact with many other mutagens and their effects are synergistic with X-rays, ultraviolet light and some chemical agents. Caffeine seems to potentiate rather than to induce chromosomal aberrations and also to transform sublethal damage of mutagenic agents into lethal damage. Conversely, coffee and caffeine are also able to inhibit the mutagenic effects of numerous chemicals. These antimutagenic effects depend on the time of administration of coffee as compared to the acting time of the mutagenic agent. In that case, caffeine seems to be able to restore the normal cycle of mitosis and phosphorylation in irradiated cells. Finally, the potential genotoxic and mutagenic effects of the most important constituents of coffee are reviewed. Mutagenicity of caffeine is mainly attributed to chemically reactive components such as aliphatic dicarbonyls. The latter compounds, formed during the roasting process, are mutagenic to bacteria but less to mammalian cells. Hydrogen peroxide is not very active but seems to considerably enhance mutagenic properties of methylglyoxal. Phenolic compounds are not mutagenic but rather anticarcinogenic. Benzopyrene and mutagens formed during pyrolysis are not mutagenic whereas roasting of coffee beans at high temperature generates mutagenic heterocyclic amines. In conclusion, the mutagenic potential of coffee and caffeine has been demonstrated in lower organisms, but usually at doses several orders of magnitude greater than the estimated lethal dose for caffeine in humans. Therefore, the chances of coffee and caffeine consumption in moderate to normal amounts to induce mutagenic effects in humans are almost nonexistent.  相似文献   

16.
Polluted aquifers contain indigenous microbial communities with the potential for in situ bioremediation. However, the effect of hydrogeochemical gradients on in situ microbial communities (especially at the plume fringe, where natural attenuation is higher) is still not clear. In this study, we used culture-independent techniques to investigate the diversity of in situ planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Within the upper and lower plume fringes, denaturing gradient gel electrophoresis profiles indicated that planktonic community structure was influenced by the steep hydrogeochemical gradient of the plume rather than the spatial location in the aquifer. Under the same hydrogeochemical conditions (in the lower plume fringe, 30 m below ground level), 16S rRNA gene cloning and sequencing showed that planktonic and attached bacterial communities differed markedly and that the attached community was more diverse. The 16S rRNA gene phylogeny also suggested that a phylogenetically diverse bacterial community operated at this depth (30 mbgl), with biodegradation of phenolic compounds by nitrate-reducing Azoarcus and Acidovorax strains potentially being an important process. The presence of acetogenic and sulphate-reducing bacteria only in the planktonic clone library indicates that some natural attenuation processes may occur preferentially in one of the two growth phases (attached or planktonic). Therefore, this study has provided a better understanding of the microbial ecology of this phenol-contaminated aquifer, and it highlights the need for investigating both planktonic and attached microbial communities when assessing the potential for natural attenuation in contaminated aquifers.  相似文献   

17.
X-ray microcomputed tomography (μCT) is an invaluable tool for visualizing plant root systems within their natural soil environment noninvasively. However, variations in the x-ray attenuation values of root material and the overlap in attenuation values between roots and soil caused by water and organic materials represent major challenges to data recovery. We report the development of automatic root segmentation methods and software that view μCT data as a sequence of images through which root objects appear to move as the x-y cross sections are traversed along the z axis of the image stack. Previous approaches have employed significant levels of user interaction and/or fixed criteria to distinguish root and nonroot material. RooTrak exploits multiple, local models of root appearance, each built while tracking a specific segment, to identify new root material. It requires minimal user interaction and is able to adapt to changing root density estimates. The model-guided search for root material arising from the adoption of a visual-tracking framework makes RooTrak less sensitive to the natural ambiguity of x-ray attenuation data. We demonstrate the utility of RooTrak using μCT scans of maize (Zea mays), wheat (Triticum aestivum), and tomato (Solanum lycopersicum) grown in a range of contrasting soil textures. Our results demonstrate that RooTrak can successfully extract a range of root architectures from the surrounding soil and promises to facilitate future root phenotyping efforts.  相似文献   

18.
The field of synthetic biology is evolving at a fast pace. It is advancing beyond single-gene alterations in single hosts to the logical design of complex circuits and the development of integrated synthetic genomes. Recent breakthroughs in deep learning, which is increasingly used in de novo assembly of DNA components with predictable effects, are also aiding the discipline. Despite advances in computing, the field is still reliant on the availability of pre-characterized DNA parts, whether natural or synthetic, to regulate gene expression in bacteria and make valuable compounds. In this review, we discuss the different bacterial synthetic biology methodologies employed in the creation of 5′ regulatory regions – promoters, untranslated regions and 5′-end of coding sequences. We summarize methodologies and discuss their significance for each of the functional DNA components, and highlight the key advances made in bacterial engineering by concentrating on their flaws and strengths. We end the review by outlining the issues that the discipline may face in the near future.  相似文献   

19.
A diverse collection of 700 bacteria obtained from an operational phenolic remediating industrial treatment plant was made to select potential strains as microbial biosensors. Pseudomonads were the most abundant group, of which 48 selected from the liquor or suspended solids were assessed for their physiological response to phenolic pollutant loading and niche specialisation. By FAME-MIS identification the Pseudomonads were clustered into six major species groups. Those isolates able to utilise phenol as a sole carbon source predominantly belonged to a non-clonal Pseudomonas pseudoalcaligenes cluster determined by REP-PCR genotyping. Rapid microtitre based respiration assays were developed to contrast activity in response to increasing concentrations of phenol. A considerable range in response for both phenol degrader and non-degrader strains was observed. This natural phenotypic and physiological heterogeneity could facilitate the selection of isolates for the development of a suite of ecologically relevant, custom designed sensors with predictable toxicity susceptibilities to monitor process efficacy.  相似文献   

20.
For over seven decades, bacteria served as a valuable source of bioactive natural products some of which were eventually developed into drugs to treat infections, cancer and immune system-related diseases. Traditionally, novel compounds produced by bacteria were discovered via conventional bioprospecting based on isolation of potential producers and screening their extracts in a variety of bioassays. Over time, most of the natural products identifiable by this approach were discovered, and the pipeline for new drugs based on bacterially produced metabolites started to run dry. This mini-review highlights recent developments in bacterial bioprospecting for novel compounds that are based on several out-of-the-box approaches, including the following: (i) targeting bacterial species previously unknown to produce any bioactive natural products, (ii) exploring non-traditional environmental niches and methods for isolation of bacteria and (iii) various types of ‘genome mining’ aimed at unravelling genetic potential of bacteria to produce secondary metabolites. All these approaches have already yielded a number of novel bioactive compounds and, if used wisely, will soon revitalize drug discovery pipeline based on bacterial natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号