首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nucleotide excision repair (NER) in higher organisms repair massive DNA abrasions caused by ultraviolet rays, and various mutagens, where Xeroderma pigmentosum group A (XPA) protein is known to be involved in damage recognition step. Any mutations in XPA cause classical Xeroderma pigmentosum disease. The extent to which XPA is required in the NER is still unclear. Here, we present the comparative study on the structural and conformational changes in globular DNA binding domain of XPA98–210 in DNA bound and DNA free state. Atomistic molecular dynamics simulation was carried out for both XPA98–210 systems using AMBER force fields. We observed that XPA98–210 in presence of damaged DNA exhibited more structural changes compared to XPA98–210 in its free form. When XPA is in contact with DNA, we found marked stability of the complex due to the formation of characteristic longer antiparallel β-sheets consisting mainly lysine residues.  相似文献   

2.
3.
The Xeroderma pigmentosum complementation group C protein (XPC) serves as the primary initiating factor in the global genome nucleotide excision repair pathway (GG-NER). Recent reports suggest XPC also stimulates repair of oxidative lesions by base excision repair. However, whether XPC distinguishes among various types of DNA lesions remains unclear. Although the DNA binding properties of XPC have been studied by several groups, there is a lack of consensus over whether XPC discriminates between DNA damaged by lesions associated with NER activity versus those that are not. In this study we report a high-throughput fluorescence anisotropy assay used to measure the DNA binding affinity of XPC for a panel of DNA substrates containing a range of chemical lesions in a common sequence. Our results demonstrate that while XPC displays a preference for binding damaged DNA, the identity of the lesion has little effect on the binding affinity of XPC. Moreover, XPC was equally capable of binding to DNA substrates containing lesions not repaired by GG-NER. Our results suggest XPC may act as a general sensor of damaged DNA that is capable of recognizing DNA containing lesions not repaired by NER.  相似文献   

4.
XPF/ERCC1 endonuclease is required for DNA lesion repair. To assess effects of a C2169A nonsense mutation in XPF at position 2169 in gastric cancer tissues and cell lines, genomic DNA was extracted from blood samples of 488 cancer patients and 64 gastric tumors. The mutation was mapped using a TaqMan MGB probe. In addition, gastric cancer cell lines were transfected with mutated XPF to explore XPF/ERCC1 interaction, XPF degradation, and DNA repair by a comet assay. The C2169A mutation was not detected in 488 samples of blood genomic DNA, yet was found in 32 of 64 gastric cancer tissue samples (50.0%), resulting in a 194C-terminal amino acid loss in XPF protein and lower expression. Laser micro-dissection confirmed that this point mutation was not present in surrounding normal tissues from the same patients. The truncated form of XPF (tXPF) impaired interaction with ERCC1, was rapidly degraded via ubiquitination, and resulted in reduced DNA repair. In gastric cancers, the mutation was monoallelic, indicating that XPF is a haplo-insufficient DNA repair gene. As the C2169A mutation is closely associated with gastric carcinogenesis in the Chinese population, our findings shine light on it as a therapeutic target for early diagnosis and treatment of gastric cancer.  相似文献   

5.
Xeroderma pigmentosum (XP) and trichothiodystrophy (TTD) are rare heritable diseases. Patients suffering from XP and 50% of TTD afflicted individuals are photosensitive and have a high susceptibility to develop skin tumors. One solution to alleviating symptoms of these diseases is to express the deficient cDNAs in patient cells as a form of gene therapy. XPC and TTD/XPD cell lines were complemented using retroviral transfer. Expressed wild-type XPC or XPD cDNAs in these cells restored the survival to UVC radiation to wild-type levels in the respective complementation groups. Although complemented XP cell lines have been studied for years, data on cyclobutane pyrimidine dimer (CPD) repair in these cells at different levels are sparse. We demonstrate that CPD repair is faster in the complemented lines at the global, gene, strand specific, and nucleotide specific levels than in the original lines. In both XPC and TTD/XPD complemented lines, CPD repair on the non-transcribed strand is faster than that for the MRC5SV line. However, global repair in the complemented cell lines and MRC5SV is still slower than in normal human fibroblasts. Despite the slower global repair rate, in the complemented XPC and TTD/XPD cells, almost all of the CPDs at "hotspots" for mutation in the P53 tumor database are repaired as rapidly as in normal human fibroblasts. Such evaluation of repair at nucleotide resolution in complemented nucleotide excision repair deficient cells presents a crucial way to determine the efficient re-establishment of function needed for successful gene therapy, even when full repair capacity is not restored.  相似文献   

6.
DNA repair, a fundamental function of cellular metabolism, has long been presumed to be constitutive and equivalent in all cells. However, we have previously shown that normal levels of nucleotide excision repair (NER) can vary by 20-fold in a tissue-specific pattern. We have now successfully established primary cultures of normal ovarian tissue from seven women by using a novel culture system originally developed for breast epithelial cells. Epithelial cells in these cultures aggregated to form three-dimensional structures called "attached ovarian epispheres". The availability of these actively proliferating cell cultures allowed us to measure NER functionally and quantitatively by the unscheduled DNA synthesis (UDS) assay, a clinical test used to diagnose constitutive deficiencies in NER capacity. We determined that ovarian epithelial cells manifested an intermediate level of NER capacity in humans, viz., only 25% of that of foreskin fibroblasts, but still 2.5-fold higher than that of peripheral blood lymphocytes. This level of DNA repair capacity was indistinguishable from that of normal breast epithelial cells, suggesting that it might be characteristic of the epithelial cell type. Similar levels of NER activity were observed in cultures established from a disease-free known carrier of a BRCA1 truncation mutation, consistent with previous normal results shown in breast epithelium and blood lymphocytes. These results establish that at least three "normal" levels of such DNA repair occur in human tissues, and that NER capacity is epigenetically regulated during cell differentiation and development.  相似文献   

7.
We have reported that xeroderma pigmentosum group A (Xpa) gene-knockout mice [Xpa (−/−) mice] are deficient in nucleotide excision repair (NER) and highly sensitive to UV-induced skin carcinogenesis. Although xeroderma pigmentosum group A patients show growth retardation, immature sexual development, and neurological abnormalities as well as a high incidence of UV-induced skin tumors, Xpa (−/−) mice were physiologically and behaviorally normal. In the present study, we kept Xpa (−/−) mice for 2 years under specific pathogen-free (SPF) conditions and found that the testis diminished in an age-dependent manner, and degenerating seminiferous tubules and no spermatozoa were detected in the 24-month-old Xpa (−/−) mice. In addition, a higher incidence of spontaneous tumorigenesis was observed in the 24-month-old Xpa (−/−) mice compared to Xpa (+/+) controls. Xpa (−/−) mice provide a useful model for investigating the aging and internal tumor formation in XPA patients.  相似文献   

8.
The Xeroderma Pigmentosum group C (XPC) protein is indispensable to global genomic repair (GGR), a subpathway of nucleotide excision repair (NER), and plays an important role in the initial damage recognition. XPC can be modified by both ubiquitin and SUMO in response to UV irradiation of cells. Here, we show that XPC undergoes degradation upon UV irradiation, and this is independent of protein ubiquitylation. The subunits of DDB-Cul4A E3 ligase differentially regulate UV-induced XPC degradation, e.g DDB2 is required and promotes, whereas DDB1 and Cul4A protect the protein degradation. Mutation of XPC K655 to alanine abolishes both UV-induced XPC modification and degradation. XPC degradation is necessary for recruiting XPG and efficient NER. The overall results provide crucial insights regarding the fate and role of XPC protein in the initiation of excision repair.  相似文献   

9.
Nucleotide excision repair (NER) is the most versatile and best studied DNA repair system in humans. NER can repair a variety of bulky DNA damages including UV-light induced DNA photoproducts. NER consists of a multistep process in which the DNA lesion is recognized and demarcated by DNA unwinding. Then, a ~28 bp DNA damage containing oligonucleotide is excised followed by gap filling using the undamaged DNA strand as a template. The consequences of defective NER are demonstrated by three rare autosomal-rezessive NER-defective syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). XP patients show severe sun sensitivity, freckling in sun exposed skin, and develop skin cancers already during childhood. CS patients exhibit sun sensitivity, severe neurologic abnormalities, and cachectic dwarfism. Clinical symptoms of TTD patients include sun sensitivity, freckling in sun exposed skin areas, and brittle sulfur-deficient hair. In contrast to XP patients, CS and TTD patients are not skin cancer prone. Studying these syndromes can increase the knowledge of skin cancer development including cutaneous melanoma as well as basal and squamous cell carcinoma in general that may lead to new preventional and therapeutic anticancer strategies in the normal population.  相似文献   

10.
The Xeroderma pigmentosum complementation group A (XPA) protein functions as a primary damage verifier and as a scaffold protein in nucleotide excision repair (NER) in all higher organisms. New evidence of XPA’s existence as a dimer and the redefinition of its DNA-binding domain (DBD) raises new questions regarding the stability and functional position of XPA in NER. Here, we have investigated XPA’s dimeric status with respect to its previously defined DBD (XPA98-219) as well as with its redefined DBD (XPA98-239). We studied the stability of XPA98-210 and XPA98-239 homo-dimer systems using all-atom molecular dynamics simulation, and we have also characterized the protein–protein interactions (PPI) of these two homo-dimeric forms of XPA. After conducting the root mean square deviation (RMSD) analyses, it was observed that the XPA98-239 homo-dimer has better stability than XPA98-210. It was also found that XPA98-239 has a larger number of hydrogen bonds, salt bridges, and hydrophobic interactions than the XPA98-210 homo-dimer. We further found that Lys, Glu, Gln, Asn, and Arg residues shared the major contribution toward the intermolecular interactions in XPA homo-dimers. The binding free energy (BFE) analysis, which used the molecular mechanics Poisson–Boltzmann method (MM-PBSA) and the generalized Born and surface area continuum solvation model (GBSA) for both XPA homo-dimers, also substantiated the positive result in favor of the stability of the XPA98-239 homo-dimer.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
12.
The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis.  相似文献   

13.
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations.  相似文献   

14.
In our previous study, we found that colcemid, an inhibitor of mitotic spindle, promotes UVC-induced apoptosis in Chinese hamster ovary cells (CHO.K1). In this study, a brief treatment of colcemid on cells after but not before UV irradiation could synergistically reduce the cell viability. Although colcemid did not affect the excision of UV-induced DNA damages such as [6–4] photoproducts or cyclobutane pyrimidine dimers, colcemid accumulated the DNA breaks when it was added to cells following UV-irradiation. This colcemid effect required nucleotide excision repair (NER) since the same accumulation of DNA breaks was barely or not detected in two NER defective strains of CHO cells, UV5 or UV24. Furthermore, the colcemid effect was not due to semi-conservative DNA replication or mitosis since the colcemid-caused accumulation of DNA breaks was also seen in non-replicating cells. Moreover, colcemid inhibited rejoining of DNA breaks accumulated by hydroxyurea/cytosine arabinoside following UV irradiation. Nevertheless, colcemid did not affect the unscheduled DNA synthesis as assayed by the incorporation of bromodeoxyuridine. Taken together, our results suggest that colcemid might inhibit the step of ligation of NER pathways.  相似文献   

15.
《Molecular cell》2022,82(7):1343-1358.e8
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   

16.

Background

Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation.

Results

The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system.

Conclusions

Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain.  相似文献   

17.
There is an increasing demand for phenotyping assays in the field of human functional genetics. DNA repair activity is representative of this functional approach, being seen as a valuable biomarker related to cancer risk. Repair activity is evaluated by incubating a cell extract with a DNA substrate containing lesions specific for the DNA repair pathway of interest. Enzymic incision at the lesion sites can be measured by means of the comet assay (single cell gel electrophoresis). The assay is particularly applicable for evaluation of base and nucleotide excision repair pathways (BER and NER). Substrate DNA containing oxidised purines gives a measure of BER, while UV-induced photolesions are the substrate for NER. While applications of comet-based DNA repair assays continue to increase, there are no commonly accepted standard protocols, which complicates inter-laboratory comparisons of results.  相似文献   

18.
19.
20.
Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5′ to the lesion by ERCC1‐XPF and 3′ to the lesion by XPG leads to the removal of a lesion‐containing oligonucleotide of about 30 nucleotides. The resulting single‐stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1‐XPF and XPG, we show that the 5′ incision by ERCC1‐XPF precedes the 3′ incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a ‘cut‐patch‐cut‐patch’ mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号