首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the inter-action of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E ? K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.  相似文献   

2.
The function of human XPA protein, a key subunit of the nucleotide excision repair pathway, has been examined with site-directed substitutions in its putative DNA-binding cleft. After screening for repair activity in a host-cell reactivation assay, we analyzed mutants by comparing their affinities for different substrate architectures, including DNA junctions that provide a surrogate for distorted reaction intermediates, and by testing their ability to recruit the downstream endonuclease partner. Normal repair proficiency was retained when XPA mutations abolished only the simple interaction with linear DNA molecules. By contrast, results from a K141E K179E double mutant revealed that excision is crucially dependent on the assembly of XPA protein with a sharp bending angle in the DNA substrate. These findings show how an increased deformability of damaged sites, leading to helical kinks recognized by XPA, contributes to target selectivity in DNA repair.  相似文献   

3.
XPA (xeroderma pigmentosum group A) protein is an essential factor for NER (nucleotide excision repair) which is believed to be involved in DNA damage recognition/verification, NER factor recruiting and stabilization of repair intermediates. Past studies on the structure of XPA have focused primarily on XPA interaction with damaged DNA. However, how XPA interacts with other DNA structures remains unknown though recent evidence suggest that these structures could be important for its roles in both NER and non-NER activities. Previously, we reported that XPA recognizes undamaged DNA ds/ssDNA (double-strand/single-strandDNA) junctions with a binding affinity much higher than its ability to bind bulky DNA damage. To understand how this interaction occurs biochemically we implemented a structural determination of the interaction using a MS-based protein footprinting method and limited proteolysis. By monitoring surface accessibility of XPA lysines to NHS-biotin modification in the free protein and the DNA junction-bound complex we show that XPA physically interacts with the DNA junctions via two lysines, K168 and K179, located in the previously known XPA(98–219) DBD (DNA-binding domain). Importantly, we also uncovered new lysine residues, outside of the known DBD, involved in the binding. We found that residues K221, K222, K224 and K236 in the C-terminal domain are involved in DNA binding. Limited proteolysis analysis of XPA–DNA interactions further confirmed this observation. Structural modelling with these data suggests a clamp-like DBD for the XPA binding to ds/ssDNA junctions. Our results provide a novel structure-function view of XPA–DNA junction interactions.  相似文献   

4.
Nucleotide excision repair (NER) is responsible for the recognition and removal of numerous structurally unrelated DNA lesions. In prokaryotes, the proteins UvrA, UvrB and UvrC orchestrate the recognition and excision of aberrant lesions from DNA. Despite the progress we have made in understanding the NER pathway, it remains unclear how the UvrA dimer interacts with DNA to facilitate DNA damage recognition. The purpose of this study was to define amino acid residues in UvrA that provide binding energy to DNA. Based on conservation among approximately 300 UvrA sequences and 3D-modeling, two positively charged residues, Lys680 and Arg691, were predicted to be important for DNA binding. Mutagenesis and biochemical analysis of Bacillus caldontenax UvrA variant proteins containing site directed mutations at these residues demonstrate that Lys680 and Arg691 make a significant contribution toward the DNA binding affinity of UvrA. Replacing these side chains with alanine or negatively charged residues decreased UvrA binding 3-37-fold. Survival studies indicated that these mutant proteins complemented a WP2 uvrA(-) strain of bacteria 10-100% of WT UvrA levels. Further analysis by DNase I footprinting of the double UvrA mutant revealed that the UvrA DNA binding defects caused a slower rate of transfer of DNA to UvrB. Consequently, the mutants initiated the oligonucleotide incision assay nearly as well as WT UvrA thus explaining the observed mild phenotype in the survival assay. Based on our findings we propose a model of how UvrA binds to DNA.  相似文献   

5.
The ubiquitous, multi-enzyme, nucleotide excision repair (NER) pathway is responsible for correcting a wide range of chemically and structurally distinct DNA lesions in the eukaryotic genome. Human XPA, a 31 kDa, zinc-associated protein, is thought to play a major NER role in the recognition of damaged DNA and the recruitment of other proteins, including RPA, ERCC1, and TFIIH, to repair the damage. Sequence analyses and genetic evidence suggest that zinc is associated with a C4-type motif, C105-X2-C108-X17-C126-X2-C129, located in the minimal DNA binding region of XPA (M98-F219). The zinc-associated motif is essential for damaged DNA recognition. Extended X-ray absorption fine structure (EXAFS) spectra collected on the zinc associated minimal DNA-binding domain of XPA (ZnXPA-MBD) show directly, for the first time, that the zinc is coordinated to the sulfur atoms of four cysteine residues with an average Zn-S bond length of 2.34+/-0.01 A. XPA-MBD was also expressed in minimal medium supplemented with cobalt nitrate to yield a blue-colored protein that was primarily (>95%) cobalt associated (CoXPA-MBD). EXAFS spectra collected on CoXPA-MBD show that the cobalt is also coordinated to the sulfur atoms of four cysteine residues with an average Co-S bond length of 2.33+/-0.02 A.  相似文献   

6.
Nucleotide excision repair (NER) in higher organisms repair massive DNA abrasions caused by ultraviolet rays, and various mutagens, where Xeroderma pigmentosum group A (XPA) protein is known to be involved in damage recognition step. Any mutations in XPA cause classical Xeroderma pigmentosum disease. The extent to which XPA is required in the NER is still unclear. Here, we present the comparative study on the structural and conformational changes in globular DNA binding domain of XPA98–210 in DNA bound and DNA free state. Atomistic molecular dynamics simulation was carried out for both XPA98–210 systems using AMBER force fields. We observed that XPA98–210 in presence of damaged DNA exhibited more structural changes compared to XPA98–210 in its free form. When XPA is in contact with DNA, we found marked stability of the complex due to the formation of characteristic longer antiparallel β-sheets consisting mainly lysine residues.  相似文献   

7.
XPA is involved in the damage recognition step of nucleotide excision repair (NER). XPA binds to other repair factors, and acts as a key element in NER complex formation. The central domain of human repair factor XPA (residues Met98 to Phe219) is responsible for the preferential binding to damaged DNA and to replication protein A (RPA). The domain consists of a zinc-containing subdomain with a compact globular structure and a C-terminal subdomain with a positively charged cleft in a novel alpha/beta structure. The resonance assignments and backbone dynamics of the central domain of human XPA were studied by multidimensional heteronuclear NMR methods. 15N relaxation data were obtained at two static magnetic fields, and analyzed by means of the model-free formalism under the assumption of isotropic or anisotropic rotational diffusion. In addition, exchange contributions were estimated by analysis of the spectral density function at zero frequency. The results show that the domain exhibits a rotational diffusion anisotropy (Dparallel/Dperpendicular) of 1.38, and that most of the flexible regions exist on the DNA binding surface in the cleft in the C-terminal subdomain. This flexibility may be involved in the interactions of XPA with various kinds of damaged DNA.  相似文献   

8.
The xeroderma pigmentosum group A protein (XPA) is a core component of nucleotide excision repair (NER). To coordinate early stage NER, XPA interacts with various proteins, including replication protein A (RPA), ERCC1, DDB2, and TFIIH, in addition to UV-damaged or chemical carcinogen-damaged DNA. In this study, we investigated the effects of mutations in the RPA binding regions of XPA on XPA function in NER. XPA binds through an N-terminal region to the middle subunit (RPA32) of the RPA heterotrimer and through a central region that overlaps with its damaged DNA binding region to the RPA70 subunit. In cell-free NER assays, an N-terminal deletion mutant of XPA showed loss of binding to RPA32 and reduced DNA repair activity, but it could still bind to UV-damaged DNA and RPA. In contrast, amino acid substitutions in the central region reduced incisions at the damaged site in the cell-free NER assay, and four of these mutants (K141A, T142A, K167A, and K179A) showed reduced binding to RPA70 but normal binding to damaged DNA. Furthermore, mutants that had one of the four aforementioned substitutions and an N-terminal deletion exhibited lower DNA incision activity and binding to RPA than XPA with only one of these substitutions or the deletion. Taken together, these results indicate that XPA interaction with both RPA32 and RPA70 is indispensable for NER reactions.  相似文献   

9.
The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER complexes. We have investigated an essential protein-protein interaction of the NER pathway, the binding of the XPA protein to the ERCC1 subunit of the repair endonuclease ERCC1-XPF. The structure of ERCC1 in complex with an XPA peptide shows that only a small region of XPA interacts with ERCC1 to form a stable complex exhibiting submicromolar binding affinity. However, this XPA peptide is a potent inhibitor of NER activity in a cell-free assay, blocking the excision of a cisplatin adduct from DNA. The structure of the peptide inhibitor bound to its target site reveals a binding interface that is amenable to the development of small molecule peptidomimetics that could be used to modulate NER repair activities in vivo.  相似文献   

10.
DNA mimic proteins have evolved to control DNA-binding proteins by competing with the target DNA for binding to the protein. The Ocr protein of bacteriophage T7 is the most studied DNA mimic and functions to block the DNA-binding groove of Type I DNA restriction/modification enzymes. This binding prevents the enzyme from cleaving invading phage DNA. Each 116 amino acid monomer of the Ocr dimer has an unusual amino acid composition with 34 negatively charged side chains but only 6 positively charged side chains. Extensive mutagenesis of the charges of Ocr revealed a regression of Ocr activity from wild-type activity to partial activity then to variants inactive in antirestriction but deleterious for cell viability and lastly to totally inactive variants with no deleterious effect on cell viability. Throughout the mutagenesis the Ocr mutant proteins retained their folding. Our results show that the extreme bias in charged amino acids is not necessary for antirestriction activity but that less charged variants can affect cell viability by leading to restriction proficient but modification deficient cell phenotypes.  相似文献   

11.
XPA is a central protein component of nucleotide excision repair (NER), a ubiquitous, multi-component cellular pathway responsible for the removal and repair of many structurally distinct DNA lesions from the eukaryotic genome. The solution structure of the minimal DNA-binding domain of XPA (XPA-MBD: M98-F219) has recently been determined and chemical shift mapping experiments with 15N-labeled XPA-MBD show that XPA binds DNA along a basic surface located in the C-terminal loop-rich subdomain. Here, XPA-DNA interactions are further characterized using an XPA fragment containing the minimal DNA-binding domain plus the ERCC1-binding region (XPA-EM: M59-F219). The 15N/1H HSQC spectrum of XPA-EM closely maps onto the 15N/1H HSQC spectrum of XPA-MBD, suggesting the DNA-binding domain is intact in the larger XPA fragment. Such a conclusion is corroborated by chemical shift mapping experiments of XPA-EM with a single strand DNA oligomer, dCCAATAACC (d9), that show the same set of 15N/1H HSQC cross peaks are effected by the addition of DNA. However, relative to DNA-free XPA-MBD, the 15N/1H HSQC cross peaks of many of the basic residues in the loop-rich subdomain of DNA-free XPA-EM are less intense, or gone altogether, suggesting the acidic ERRC1-binding region of XPA-EM may associate transiently with the basic DNA-binding surface. While the DNA-binding domain in XPA-EM is structured and functional, 15N-edited NOESY spectra of XPA-EM indicate that the acidic ERRC1-binding region is unstructured. If the structural features observed for XPA-EM persist in XPA, transient intramolecular association of the ERCC1-binding domain with the DNA-binding region may play a role in the sequential assembly of the NER components.  相似文献   

12.
Interaction of nucleotide excision repair factors--replication protein A (RPA) and Xeroderma pigmentosum complementing group A protein (XPA)--with DNA structures containing nucleotides with bulky photoreactive groups imitating damaged nucleotides was investigated. Efficiency of photoaffinity modification of two proteins by photoreactive DNAs varied depending on DNA structure and type of photoreactive group. The secondary structure of DNA and, first of all, the presence of extended single-stranded parts plays a key role in recognition by RPA. However, it was shown that RPA efficiently interacts with DNA duplex containing a bulky substituent at the 5 -end of a nick. XPA was shown to prefer the nicked DNA; however, this protein was cross-linked with approximately equal efficiency by single-stranded and double-stranded DNA containing a bulky substituent inside the strand. XPA seems to be sensitive not only to the structure of DNA double helix, but also to a bulky group incorporated into DNA. The mechanism of damage recognition in the process of nucleotide excision repair is discussed.  相似文献   

13.
14.
15.
Human cells contain a protein that binds to UV-irradiated DNA with high affinity. This protein, damaged DNA-binding protein (DDB), is a heterodimer of two polypeptides, p127 and p48. Recent in vivo studies suggested that DDB is involved in global genome repair of cyclobutane pyrimidine dimers (CPDs), but the mechanism remains unclear. Here, we show that in vitro DDB directly stimulates the excision of CPDs but not (6-4)photoproducts. The excision activity of cell-free extracts from Chinese hamster AA8 cell line that lacks DDB activity was increased 3-4-fold by recombinant DDB heterodimer but not p127 subunit alone. Moreover, the addition of XPA or XPA + replication protein A (RPA), which themselves enhanced excision, also enhanced the excision in the presence of DDB. DDB was found to elevate the binding of XPA to damaged DNA and to make a complex with damaged DNA and XPA or XPA + RPA as judged by both electrophoretic mobility shift assays and DNase I protection assays. These results suggest that DDB assists in the recognition of CPDs by core NER factors, possibly through the efficient recruitment of XPA or XPA.RPA, and thus stimulates the excision reaction of CPDs.  相似文献   

16.
The DNA-repair protein XPA is required to recognize a wide variety of bulky lesions during nucleotide excision repair. Independent NMR solution structures of a human XPA fragment comprising approximately 40% of the full-length protein, the minimal DNA-binding domain, revealed that one-third of this molecule was disordered. To better characterize structural features of full-length XPA, we performed time-resolved trypsin proteolysis on active recombinant Xenopus XPA (xXPA). The resulting proteolytic fragments were analyzed by electrospray ionization interface coupled to a Fourier transform ion cyclotron resonance mass spectrometry and SDS-PAGE. The molecular weight of the full-length xXPA determined by mass spectrometry (30922.02 daltons) was consistent with that calculated from the sequence (30922.45 daltons). Moreover, the mass spectrometric data allowed the assignment of multiple xXPA fragments not resolvable by SDS-PAGE. The neural network program Predictor of Natural Disordered Regions (PONDR) applied to xXPA predicted extended disordered N- and C-terminal regions with an ordered internal core. This prediction agreed with our partial proteolysis results, thereby indicating that disorder in XPA shares sequence features with other well-characterized intrinsically unstructured proteins. Trypsin cleavages at 30 of the possible 48 sites were detected and no cleavage was observed in an internal region (Q85-I179) despite 14 possible cut sites. For the full-length xXPA, there was strong agreement among PONDR, partial proteolysis data, and the NMR structure for the corresponding XPA fragment.  相似文献   

17.
Dimerization of human XPA and formation of XPA2-RPA protein complex   总被引:2,自引:0,他引:2  
Yang ZG  Liu Y  Mao LY  Zhang JT  Zou Y 《Biochemistry》2002,41(43):13012-13020
XPA plays an important role in the DNA damage recognition during human nucleotide excision repair. Here we report that the XPA is a homodimer either in the free state or as a complex with human RPA in solution under normal conditions. The human XPA protein purified from baculovirus-infected sf21 insect cells has a molecular mass of 36 317 Da, as determined by mass spectroscopy. However, the apparent molecular mass of XPA determined by the native gel filtration chromatography was about 71 kDa, suggesting that XPA is a dimer. This observation was supported by a native PFO-PAGE and fluorescence spectroscopy analysis. XPA formed a dimer (XPA2) in a broad range of XPA and NaCl concentrations, and the dimerization was not due to the disulfide bond formation. Furthermore, a titration analysis of the binding of XPA to the human RPA indicated that it was the XPA2 that formed the complex with RPA. Finally, the difference between the mass spectrometric and the calculated masses of XPA implies that the protein contains posttranslational modifications. Taken together, our data suggest that the dimerization of XPA may play an important role in the DNA damage recognition of nucleotide excision repair.  相似文献   

18.
The Xeroderma Pigmentosum A (XPA) protein is involved in the DNA damage recognition and repair complex formation steps of nucleotide excision repair (NER), and has been shown to preferentially bind to various forms of DNA damage including bulky lesions. DNA interstrand crosslinks are of particular interest as a form of DNA damage, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery, and mitomycin C (MMC) is one of several useful cancer chemotherapy drugs that induce these lesions. Purified XPA and the minimal DNA-binding domain of XPA are both fully capable of preferentially binding to MMC-DNA interstrand crosslinks in the absence of other proteins from the NER complex. Circular dichroism (CD) and gel shift assays were used to investigate XPA-DNA binding and to assess changes in secondary structure induced as a consequence of the interaction of XPA with model MMC-crosslinked and unmodified DNAs. These studies revealed that while XPA demonstrates only a modest increase in affinity for adducted DNA, it adopts a different conformation when bound to MMC-damaged DNA than when bound to undamaged DNA. This change in conformation may be more important in recruiting other proteins into a competent NER complex at damaged sites than preferential binding per se. Arsenic had little effect on XPA binding even at toxic concentrations, whereas cadmium reduced XPA binding to DNA to 10-15% that of Zn-XPA, and zinc addition could only partially restore activity. In addition, there was little or no change in conformation when Cd-XPA bound MMC-crosslinked DNA even though it demonstrated preferential binding, which may contribute to the mechanism by which cadmium can act as a co-mutagen and co-carcinogen.  相似文献   

19.
20.
Hedglin M  O'Brien PJ 《Biochemistry》2008,47(44):11434-11445
DNA repair proteins conduct a genome-wide search to detect and repair sites of DNA damage wherever they occur. Human alkyladenine DNA glycosylase (AAG) is responsible for recognizing a variety of base lesions, including alkylated and deaminated purines, and initiating their repair via the base excision repair pathway. We have investigated the mechanism by which AAG locates sites of damage using an oligonucleotide substrate containing two sites of DNA damage. This substrate was designed so that AAG randomly binds to either of the two lesions. AAG-catalyzed base excision creates a repair intermediate, and the subsequent partitioning between dissociation and diffusion to the second site can be quantified from the rates of formation of the different products. Our results demonstrate that AAG has the ability to slide for short distances along DNA at physiological salt concentrations. The processivity of AAG decreases with increasing ionic strength to become fully distributive at high ionic strengths, suggesting that electrostatic interactions between the negatively charged DNA and the positively charged DNA binding surface are important for nonspecific DNA binding. Although the amino terminus of the protein is dispensable for glycosylase activity at a single site, we find that deletion of the 80 amino-terminal amino acids significantly decreases the processivity of AAG. These observations support the idea that diffusion on undamaged DNA contributes to the search for sites of DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号