首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,2,6,6-Tetramethyl-1-piperidinyloxy radical (TEMPO)-mediated oxidation of hyaluronan was studied at pH 10.2 and temperature of 0 degrees C with NaOCl as the primary oxidant. As with other polysaccharides, a high selectivity of oxidation was observed. The degradation of the polymer was essentially caused by the oxidation process. The primary oxidant and the pH of the reaction mixture did not alter the molecular weight of hyaluronan during oxidation. The kinetics of the oxidation process was investigated at different concentrations of reactants and the inorganic salts, NaBr, NaCl, and Na2SO4. An increase in the salt concentration in the mixture causes a major decrease in the rate of the oxidation, and this decrease is independent of the nature of the salt.  相似文献   

2.
Oxidation of sucrose by the NaOCl/TEMPO system provided sucrose tricarboxylate without the addition of sodium bromide as co-catalyst when high-frequency (500 kHz) ultrasound was applied, in contrast to very limited conversion without sonication. In the presence of sodium bromide, sonication also caused acceleration of the oxidation. The rate increase due to sonication of the oxidant system prior to sucrose addition suggests that ultrasound acts at the level of the formation of the nitrosonium ion, the active oxidising species in the catalytic cycle.  相似文献   

3.
Beta-cyclodextrin (beta-CD) was reacted with catalytic amounts of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO), sodium hypochlorite and sodium bromide at 2 degrees C and a pH value of 10 in water. The primary alcohol groups were selectively oxidized into carboxylate groups within a few minutes, and mono- and dicarboxy-beta-cyclodextrin sodium salts were isolated and characterized by 1H, 13C NMR and mass spectroscopy. With this reaction system, the degradation of the cyclodextrin was limited, provided the oxidation was performed at 2 degrees C, at constant pH value of 10, with catalytic amounts of TEMPO and controlled quantities of sodium hypochlorite and sodium bromide for the continuous regeneration of the oxoammonium salt.  相似文献   

4.
Curdlan from Agrobacterium sp. was oxidized using 2,2,6,6,-tetramethylpiperidine-1-oxyl radical (TEMPO)–NaBr–NaClO systems at pH 11. The effects of oxidation conditions on degrees of oxidation and polymerization of the products obtained were studied using SEC–MALLS, NMR and IR analyses. Different families of water-soluble β-(1,3)-polyglucuronic and β-(1,3)-polyglucoglucuronic acid sodium salts were quantitatively generated with a yield of 80% and without significant loss of their molecular weights.Given that β-(1,3)-polyglucuronic acids prepared from the regioselective oxidation of curdlan by the TEMPO–NaBr–NaClO systems regularly consist of the glucuronic acid repeating unit; they may open new biotechnological fields for the utilizations of water soluble forms of curdlan.  相似文献   

5.
NHPI (N-hydroxyphthalimide) was used to mediate the oxidation of cellulose fibers in the absence of sodium bromide, as traditionally was used in this kind of transformations, solely using sodium hypochlorite (NaOCl) as the primary oxidant. Avoiding the use of NaBr is highly desired from both environmental and corrosion concerns. The non-persistent PINO (phthalimide-N-oxy) radical, the key species in the oxidation reaction, has been in situ generated from NHPI and copper (II) chloride. The reaction was performed at room temperature at pH=10.5. The carboxylic moiety formation was evidenced by FTIR and X-ray photoelectronic spectroscopy (XPS) and the content of the negatively charged groups determined by potentiometric titration. The changes appeared in crystallinity were evidenced by X-ray diffraction technique.  相似文献   

6.
In the present study, 2,2,6,6-tetramethylpiperidinooxy nitroxide (TEMPO) has been applied successfully to discriminate between glucosylceramide in the outer and inner leaflets of closed membrane bilayers. The nitroxyl radicals TEMPO and carboxy-TEMPO, once oxidized to nitrosonium ions, are capable of oxidizing residues that contain primary hydroxyl and amino groups. When applied to radiolabeled glucosylceramide in liposomes, oxidation with TEMPO led to an oxidized product that was easily separated from the original lipid by thin-layer chromatography, and that was identified by mass spectrometric analysis as the corresponding acid glucuronylceramide. To test whether oxidation was confined to the external leaflet, TEMPO was applied to large unilamellar vesicles (LUVs) consisting of egg phosphatidylcholine- egg phosphatidylethanolamine;-cholesterol 55:5:40 (mol/mol). TEMPO oxidized most radiolabeled phosphatidylethanolamine, whereas carboxy-TEMPO oxidized only half. Hydrolysis by phospholipase A(2) confirmed that 50% of the phosphatidylethanolamine was accessible in the external bilayer leaflet, suggesting that TEMPO penetrated the lipid bilayer and carboxy-TEMPO did not. When applied to LUVs containing <1 mol% radiolabeled glucosylceramide or short-chain C(6)-glucosylceramide, carboxy-TEMPO oxidized half the glucosylceramide. However, if surface C(6)-glucosylceramide was first depleted by bovine serum albumin (BSA) (extracting 49 +/- 1%), 94% of the remaining C(6)-glucosylceramide was resistant to oxidation. Carboxy-TEMPO oxidized glucosylceramide on the surface of LUVs without affecting inner leaflet glucosylceramide. At pH 9.5 and at 0 degrees C, the reaction reached completion by 20 min.  相似文献   

7.
The extremely thermophilic anaerobic archaeon strain B1001 was isolated from a hot-spring environment in Japan. The cells were irregular cocci, 0.5 to 1.0 micrometers in diameter. The new isolate grew at temperatures between 60 and 95 degrees C (optimum, 85 degrees C), from pH 5.0 to 9.0 (optimum, pH 7.0), and from 1.0 to 6.0% NaCl (optimum, 2.0%). The G+C content of the genomic DNA was 43.0 mol%. The 16S rRNA gene sequencing of strain B1001 indicated that it belongs to the genus Thermococcus. During growth on starch, the strain produced a thermostable cyclomaltodextrin glucanotransferase (CGTase). The enzyme was purified 1,750-fold, and the molecular mass was determined to be 83 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Incubation at 120 degrees C with SDS and 2-mercaptoethanol was required for complete unfolding. The optimum temperatures for starch-degrading activity and cyclodextrin synthesis activity were 110 and 90 to 100 degrees C, respectively. The optimum pH for enzyme activity was pH 5.0 to 5.5. At pH 5.0, the half-life of the enzyme was 40 min at 110 degrees C. The enzyme formed mainly alpha-cyclodextrin with small amounts of beta- and gamma-cyclodextrins from starch. This is the first report on the presence of the extremely thermostable CGTase from hyperthermophilic archaea.  相似文献   

8.
The 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation was applied to water-insoluble (1  3)-β-d-glucans, paramylon and curdlan, to prepare water-soluble oxidized products. When the addition level of NaClO used as the primary oxidant was 15 mmol per gram of the polysaccharide in the combination with catalytic amounts of TEMPO and NaBr under aqueous conditions at pH 10, water-soluble TEMPO-oxidized products were obtained quantitatively within 100 min. 13C NMR analysis of the TEMPO-oxidized products revealed that the C6 primary hydroxyl groups of both paramylon and curdlan were completely converted to carboxylate groups by the oxidation. Thus, new (1  3)-β-d-polyglucuronic acid sodium salts having almost homogeneous chemical structures can be obtained. The highly crystalline paramylon took longer time for the complete oxidation of the C6 primary hydroxyls to carboxylate groups than curdlan. However, remarkable depolymerization occurs on main chains during the oxidation, and the degrees of polymerization of the water-soluble TEMPO-oxidized products prepared from paramylon and curdlan were only 68 and 86, respectively.  相似文献   

9.
Water-soluble cellulose acetates with a degree of substitution (DS) of 0.5, prepared by partial deacetylation of cellulose acetate of DS=2.5, were oxidized with catalytic amount of 2,2,6,6,-tetramethyl-1-piperidinyloxy radical (TEMPO), sodium hypochlorite, and sodium bromide to provide useful cellouronic acids. The oxidation was conducted at a constant pH of 10 and at 2 degrees C to avoid the occurrence of side products. Whereas only the primary hydroxyl groups of cellulose acetate were oxidized, a variable degree of oxidation (DO) resulted in a range of 0.33 to 1.0, depending on the concentration in sodium hypochlorite. Thus, polyglucuronic acid as well as partially acetylated cellouronic acid, having a range of DO were obtained.  相似文献   

10.
Chitosan was selectively oxidized at C-6 primary alcohol groups by TEMPO in the presence of sodium hypochlorite (NaOCl) and sodium bromide (NaBr), and also non-specifically oxidized only by NaOCl. Sequentially oxidized chitosan samples from 25 to 100% were produced by 25% increment, from both oxidation processes. By introducing carbonyl groups in chitosan structure with either oxidizing process, the water solubility was shown to be enhancing from all the oxidized sample groups. At the 25% of non-specific oxidation, 0.56% of solubility was detected but there was no proportional increase in solubility as the oxidation level increased. Moreover, the decreases in solubility were observed at 50%-oxidized (0.43%) and 100%-oxidized (0.45%) chitosan samples. During the specific oxidation process, 25%-oxidized 6-oxychitosan had the highest solubility, and the solubility decreased substantially from 0.72 to 0.15% as the degree of oxidation increased from 25 to 100%. Possibly, excessive incorporation of negative charges on chitosan resulted in the aggregation among 6-oxychitosan molecules by charge-charge interactions. The strongest cholic acid-retardation index (CRI, %) of highly soluble 25%-oxidized 6-oxychitosan was consistently observed until 24h of dialysis, which means the CRI is closely related to the water solubility of 6-oxychitosan. Therefore, the solubility improvement should be considered for enhancing the biological activity such as bile acid-binding capacity. Also, it was suggested that negative charge increase in chitosan structure above a certain level led to adverse effect on the binding capacity.  相似文献   

11.
Ding B  Ye Yq  Cheng J  Wang K  Luo J  Jiang B 《Carbohydrate research》2008,343(18):3112-3116
2,2,6,6-Tetramethyl-1-piperidinyloxy radical (TEMPO)-mediated oxidations of substituted polysaccharides were studied at pH 10.2 and at a temperature of 0 °C with NaOCl as the oxidant. The reaction is highly selective, and it was shown that the oxidation can proceed to a yield of nearly 100%. The oxidation process was investigated for several substituted polysaccharides, especially for a series of hydroxypropyl guar gums with different molar degrees of substitution. It was shown that this oxidation can be used for the determination of the degree of substitution at C-6 of the polysaccharide by comparing the difference in oxidation yield between substituted and natural polysaccharides. Studies on several hydroxypropyl guar gums showed that the degrees of substitution at C-6—for MS of 0.08, 0.34, 0.62, and 1.08—are 0.06, 0.24, 0.40, and 0.44, respectively. The results were extended to other polysaccharides such as carboxymethyl cellulose, cationic guar gum, carboxymethyl pullulan, and methyl cellulose. It can be concluded that the TEMPO-mediated oxidation is a useful method for the determination of the DS at the substituted C-6 position for different kinds of modified polysaccharides.  相似文献   

12.
N,N-Dimethyl-p-anisidine (DMA) was used as a substrate to differentiate between the direct, or chloride-independent, and the indirect, or chloride-dependent, pathways characteristic of myeloperoxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7). The chemical oxidation by sodium hypochlorite and the horseradish peroxidase-catalyzed oxidation by H2O2 were also investigated for a comparison. The chemical oxidation of DMA by NaOCl (DMA/NaOCl = 1) gave the p-N,N-dimethylaminophenoxy radical at pH 5 and 7. p-Benzoquinone and formaldehyde were determined as stable end-products. On the other hand, the cation radical of DMA was detected and p-benzoquinone was not obtained in the horseradish peroxidase-H2O2-Cl- system. In the presence of Cl- the myeloperoxidase-catalyzed oxidation at pH 5 gave nearly the same result as did the oxidation by NaOCl, whereas in the absence of Cl- the result of the oxidation was similar to that of the horseradish peroxidase-catalyzed oxidation, except for a low yield of formaldehyde formation, which was ascribed to the decomposition of H2O2 by the catalase activity of myeloperoxidase. Although the myeloperoxidase-catalyzed oxidation of DMA at pH 7 in the presence of Cl- gave only the cation radical of DMA, a fairly large amount of p-benzoquinone was obtained as a product. This result indicates that the indirect chloride-dependent oxidation is also operating at pH 7. The reaction mechanism for the myeloperoxidase-catalyzed oxidation of DMA is proposed.  相似文献   

13.
The depolymerization of starch by beta-amylase during exposure to hydrostatic pressure up to 700 MPa and within a temperature range from 20 to 70 degrees C has been investigated. Inactivation of the enzyme as well as alterations in conversion speed in response to combined pressure-temperature treatments were assessed by analyzing the kinetic rate constants. At 200 MPa a significant stabilization of the enzyme against heat inactivation was observed. However, high pressure also impedes the catalytic reaction and a progressive reduction of the conversion rate constants with increasing pressure was found at all temperatures investigated. For the overall reaction of maltose liberation from soluble starch in ACES buffer at pH 5.6 an optimum was identified at 106 MPa and at 63 degrees C, which is approximately 7 degrees C above the local maximum at ambient pressure (0.1 MPa). Gelatinization of nonsoluble starch granules in response to pressure-temperature (p-T) treatment has been inspected by phase-contrast microscopy and yielded circular curves of identical effect in the p-T plane.  相似文献   

14.
The oxidation of TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl radical) has been studied in the presence of recombinant laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Polyporus pinsitus (rPpL), Myceliophthora thermophila (rMtL), Coprinus cinereus (rCcL) and Rhizoctonia solani (rRsL) in buffer solution pH 4.5–7.3 and at 25 °C. At pH 5.5 the oxidation constant calculated from the initial rate of TEMPO oxidation was 1.7 × 104, 1.4 × 103, 7.8 × 102 and 5.2 × 102 M−1 s−1 for rPpL, rRsL, rCcL and rMtL, respectively. The maximal activity of rPpL-catalysed TEMPO oxidation was at pH 5.0. The pKa obtained in neutral pH range was 6.2. The reactivity of laccases is in a good agreement with laccases copper type I redox potential.

TEMPO oxidation rate increased 541 times in the presence of 10-(3-propylsulfonate) phenoxazine (PSPX). The model of synergistic TEMPO and PSPX oxidation was proposed. Experimentally obtained rate constants for rPpL-catalysed PSPX oxidation were in a good agreement with those calculated from the synergistic model, therefore confirming the feasibility of the model. The acceleration of TEMPO oxidation with high reactive laccase substrates opens new possibilities for TEMPO application as a mediator.  相似文献   


15.
Cyclomaltodextrin glucanotransferase [1,4-alpha-D-glucan-4-alpha-D-(1,4-alpha-D-glucano)-transferase (cyclizing), E.C.-2.4.1.19] of an alkalophilic Bacillus sp. No. 38-2 (ATCC 21783), which contains three types of enzymes (acid, neutral, and alkaline enzymes), was immobilized on synthetic adsorption resin. No distinguishing changes in pH or thermal stabilities of enzyme were observed due to the immobilization. Since acid-enzyme activity had disappeared, the optimum pH of immobilized enzyme was 9.0. Optimum temperature for the enzyme activity changed from 50 to 55 degrees C. The enzyme converted starch to cyclodextrins without significant loss of activity under the conditions of continuous reaction for about two weeks by using the column system (60 degrees C at pH 8.0). About 63% of soluble starch solution [4% (w/v)] was changed to cyclodextrins, as tested so far.  相似文献   

16.
Maltodextrins were oxidized to polyglucuronic acids with the ternary oxidation system: NaOCl-NaBr-2,2,6,6-tetramethylpiperidine-l-oxyl (TEMPO). The chemoselective oxidation at the primary alcohol groups was shown to be strongly pH dependent. Oxidation of polysaccharides was best achieved at pH 9.5 in order to minimize depolymerization, whereas oxidation of oligosaccharides required stronger alkaline conditions (pH 11-11.5). The resulting sodium polyglucuronates present interesting sequestering properties, the best of which being obtained from maltodextrins with the highest degrees of polymerization. The same oxidation process allowed the convenient conversion of D-glucose to D-glucaric acid in high yield (> 90%), under strongly basic conditions (pH > 11.5).  相似文献   

17.
The pH and temperature dependences of tyrosine oxidation were measured in reaction centers from mutants of Rhodobacter sphaeroides containing a tyrosine residue near a highly oxidizing bacteriochlorophyll dimer. Under continuous illumination, a rapid increase in the absorption change at 420 nm was observed because of the formation of a charge-separated state involving the oxidized dimer and reduced primary quinone, followed by a slow absorption decrease attributed to tyrosine oxidation. Both the amplitude and rate of the slow absorption change showed a pH dependency, indicating that, at low pH, the rate of tyrosine oxidation is limited by the transfer of the phenolic proton to a nearby base. Below 17 degrees C, the rate of the slow absorption change had a strong exponential dependence on the temperature, indicating a high activation energy. At higher pH and temperature, the overall rate of tyrosyl formation appears to be limited by a proposed conformational change in the reaction center that is also observed in reaction centers that do not undergo tyrosine oxidation. The yield of tyrosyl formation measured using electron paramagnetic resonance spectroscopy decreased significantly at 4 degrees C compared to 20 degrees C and was lower at both temperatures in mutants expected to have a slightly smaller driving force for tyrosyl formation.  相似文献   

18.
Reductive titration curves of flavodoxin from Desulfovibrio vulgaris displayed two one-electron steps. The redox potential E-2 for the couple oxidized flavodoxin/flavodoxin semiquinone was determined by direct titration with dithionite. E-2 was -149 plus or minus 3 mV (pH 7.78, 25 degrees C). The redox potential E-1 for the couple flavodoxin semiquinone/fully reduced flavodoxin was deduced from the equilibrium concentration of these species in the presence of hydrogenase and H-2. E-1 was -438 plus or minus 8 mV (pH 7.78, 25 degrees C). Light-absorption and fluorescence spectra of flavodoxin in its three redox states have been recorded. Both the rate and extent of reduction of flavodoxin semiguinone with dithionite were found to depend on pH. An equilibrium between the semiquinone and hydroquinone forms occurred at pH values close to the neutrality, even in the presence of a large excess of dithionite, suggesting an ionization in fully reduced flavodoxin with a pK-a = 6.6. The association constants K for the three FMN redox forms with the apoprotein were deduced from the value of K (K = 8 times 10-7 M-1) measured with oxidized EMN at pH 7.0. Oxidized flavodoxin was found to comproportionate with the fully reduced protein (k-comp = 4.3 times 10-3 M-1 times s-1, pH 9.0, 22 degrees C) and with reduced free FMN (K-comp = 44 M-1 times s-1, pH 8.1, 20 degrees C). Fast oxidation of reduced flavodoxin occurred in the presence of O-2. Slower oxidation of semiquinone was dependent on pH in a drastic way.  相似文献   

19.
We characterized a model compound for the lysine tyrosylquinone (LTQ) cofactor of lysyl oxidase which is one of the mammalian copper-dependent amine oxidases. The model compound, 4-butylamino-5-methyl-o-quinone, was prepared from n-butylamine and 4-methylcatechol by the oxidation with sodium iodate and characterized by spectroscopic analyses. The absorption maximum at 494 nm is consistent with that of lysyl oxidase. The model compound was capable of deaminating benzylamine to benzaldehyde at 37 degrees C in buffered aqueous acetonitrile. The aldehyde production was markedly elevated in the presence of the Cu(II)-EDTA complex but inhibited by free Cu(II). The catalytic cycle was observed at pH 10 in the presence of Cu(II), and the pH activity profile showed a broad optimum at about pH 9.0. In the presence of beta-aminopropionitrile and upon deoxygenation with N2 aldelyde, production was decreased. The important features of the reaction were consistent with the enzymatic reaction.  相似文献   

20.
The first gram-scale syntheses of two hyaluronan disaccharides are described. Construction of the (1-->4)-linked disaccharide 12 was achieved in 12% overall yield using 2,3-bis-dimethyl acetal protection in combination with chlorosilane-induced carbamate cleavage methodologies. The uronic acid functionality was installed using TEMPO oxidation with NaOCl as the hypochlorite source. The (1-->3)-linked disaccharide 18 was achieved in 7% overall yield utilizing acetonide protection in addition to the chlorosilane-induced carbamate cleavage methodology and the TEMPO oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号